927 resultados para Error correction coding
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.
Resumo:
The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.
Resumo:
Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.
Resumo:
We studied the effect of tactile double simultaneous stimulation (DSS) within and between hands to examine spatial coding of touch at the fingers. Participants performed a go/no-go task to detect a tactile stimulus delivered to one target finger (e.g., right index), stimulated alone or with a concurrent non-target finger, either on the same hand (e.g., right middle finger) or on the other hand (e.g., left index finger=homologous; left middle finger=non-homologous). Across blocks we also changed the unseen hands posture (both hands palm down, or one hand rotated palm-up). When both hands were palm-down DSS interference effects emerged both within and between hands, but only when the non-homologous finger served as non-target. This suggests a clear segregation between the fingers of each hand, regardless of finger side. By contrast, when one hand was palm-up interference effects emerged only within hand, whereas between hands DSS interference was considerably reduced or absent. Thus, between hands interference was clearly affected by changes in hands posture. Taken together, these findings provide behavioral evidence in humans for multiple spatial coding of touch during tactile DSS at the fingers. In particular, they confirm the existence of representational stages of touch that distinguish between body-regions more than body-sides. Moreover, they show that the availability of tactile stimulation side becomes prominent when postural update is required.
Resumo:
We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov regularization, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-norm penalty regularization recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularization. We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm penalty approach and a mixed total variation (TV) L1–L2-norm penalty approach. For problems with model error where sharp fronts are present and the background and observation error covariances are known, the mixed TV L1–L2-norm penalty performs better than either the L1-norm method or the strong constraint 4DVar (L2-norm)method. A strength of the mixed TV L1–L2-norm regularization is that in the case where a simplified form of the background error covariance matrix is used it produces a much more accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems with poorly tuned background error covariance matrices.
Resumo:
The temporal variability of the atmosphere through which radio waves pass in the technique of differential radar interferometry can seriously limit the accuracy with which the method can measure surface motion. A forward, nested mesoscale model of the atmosphere can be used to simulate the variable water content along the radar path and the resultant phase delays. Using this approach we demonstrate how to correct an interferogram of Mount Etna in Sicily associated with an eruption in 2004-5. The regional mesoscale model (Unified Model) used to simulate the atmosphere at higher resolutions consists of four nested domains increasing in resolution (12, 4, 1, 0.3 km), sitting within the analysis version of a global numerical model that is used to initiate the simulation. Using the high resolution 3D model output we compute the surface pressure, temperature and the water vapour, liquid and solid water contents, enabling the dominant hydrostatic and wet delays to be calculated at specific times corresponding to the acquisition of the radar data. We can also simulate the second-order delay effects due to liquid water and ice.
Resumo:
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.
Resumo:
The enhanced radar return associated with melting snow, ‘the bright band’, can lead to large overestimates of rain rates. Most correction schemes rely on fitting the radar observations to a vertical profile of reflectivity (VPR) which includes the bright band enhancement. Observations show that the VPR is very variable in space and time; large enhancements occur for melting snow, but none for the melting graupel in embedded convection. Applying a bright band VPR correction to a region of embedded convection will lead to a severe underestimate of rainfall. We revive an earlier suggestion that high values of the linear depolarisation ratio (LDR) are an excellent means of detecting when bright band contamination is occurring and that the value of LDR may be used to correct the value of Z in the bright band.
Resumo:
Iatrogenic errors and patient safety in clinical processes are an increasing concern. The quality of process information in hardcopy or electronic form can heavily influence clinical behaviour and decision making errors. Little work has been undertaken to assess the safety impact of clinical process planning documents guiding the clinical actions and decisions. This paper investigates the clinical process documents used in elective surgery and their impact on latent and active clinical errors. Eight clinicians from a large health trust underwent extensive semi- structured interviews to understand their use of clinical documents, and their perceived impact on errors and patient safety. Samples of the key types of document used were analysed. Theories of latent organisational and active errors from the literature were combined with the EDA semiotics model of behaviour and decision making to propose the EDA Error Model. This model enabled us to identify perceptual, evaluation, knowledge and action error types and approaches to reducing their causes. The EDA error model was then used to analyse sample documents and identify error sources and controls. Types of knowledge artefact structures used in the documents were identified and assessed in terms of safety impact. This approach was combined with analysis of the questionnaire findings using existing error knowledge from the literature. The results identified a number of document and knowledge artefact issues that give rise to latent and active errors and also issues concerning medical culture and teamwork together with recommendations for further work.
Resumo:
Aim. To describe preliminary findings of how the profile of the use of blur, disparity and proximal cues varies between non-strabismic groups and those with different types of esotropia. Design. Case control study Methodology. A remote haploscopic photorefractor measured simultaneous convergence and accommodation to a range of targets containing all combinations of binocular disparity, blur and proximal (looming) cues. 13 constant esotropes, 16 fully accommodative esotropes, and 8 convergence excess esotropes were compared with age and refractive error matched controls, and 27 young adult emmetropic controls. All wore full refractive correction if not emmetropic. Response AC/A and CA/C ratios were also assessed. Results. Cue use differed between the groups. Even esotropes with constant suppression and no binocular vision (BV) responded to disparity in cues. The constant esotropes with weak BV showed trends for more stable responses and better vergence and accommodation than those without any BV. The accommodative esotropes made less use of disparity cues to drive accommodation (p=0.04) and more use of blur to drive vergence (p=0.008) than controls. All esotropic groups failed to show the strong bias for better responses to disparity cues found in the controls, with convergence excess esotropes favoring blur cues. AC/A and CA/C ratios existed in an inverse relationship in the different groups. Accommodative lag of >1.0D at 33cm was common (46%) in the pooled esotropia groups compared with 11% in typical children (p=0.05). Conclusion. Esotropic children use near cues differently from matched non-esotropic children in ways characteristic to their deviations. Relatively higher weighting for blur cues was found in accommodative esotropia compared to matched controls.
Resumo:
We examine to what degree we can expect to obtain accurate temperature trends for the last two decades near the surface and in the lower troposphere. We compare temperatures obtained from surface observations and radiosondes as well as satellite-based measurements from the Microwave Soundings Units (MSU), which have been adjusted for orbital decay and non-linear instrument-body effects, and reanalyses from the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centre for Environmental Prediction (NCEP). In regions with abundant conventional data coverage, where the MSU has no major influence on the reanalysis, temperature anomalies obtained from microwave sounders, radiosondes and from both reanalyses agree reasonably. Where coverage is insufficient, in particular over the tropical oceans, large differences are found between the MSU and either reanalysis. These differences apparently relate to changes in the satellite data availability and to differing satellite retrieval methodologies, to which both reanalyses are quite sensitive over the oceans. For NCEP, this results from the use of raw radiances directly incorporated into the analysis, which make the reanalysis sensitive to changes in the underlying algorithms, e.g. those introduced in August 1992. For ERA, the bias-correction of the one-dimensional variational analysis may introduce an error when the satellite relative to which the correction is calculated is biased itself or when radiances change on a time scale longer than a couple of months, e.g. due to orbit decay. ERA inhomogeneities are apparent in April 1985, October/November 1986 and April 1989. These dates can be identified with the replacements of satellites. It is possible that a negative bias in the sea surface temperatures (SSTs) used in the reanalyses may have been introduced over the period of the satellite record. This could have resulted from a decrease in the number of ship measurements, a concomitant increase in the importance of satellite-derived SSTs, and a likely cold bias in the latter. Alternately, a warm bias in SSTs could have been caused by an increase in the percentage of buoy measurements (relative to deeper ship intake measurements) in the tropical Pacific. No indications for uncorrected inhomogeneities of land surface temperatures could be found. Near-surface temperatures have biases in the boundary layer in both reanalyses, presumably due to the incorrect treatment of snow cover. The increase of near-surface compared to lower tropospheric temperatures in the last two decades may be due to a combination of several factors, including high-latitude near-surface winter warming due to an enhanced NAO and upper-tropospheric cooling due to stratospheric ozone decrease.
Resumo:
The present study investigates the growth of error in baroclinic waves. It is found that stable or neutral waves are particularly sensitive to errors in the initial condition. Short stable waves are mainly sensitive to phase errors and the ultra long waves to amplitude errors. Analysis simulation experiments have indicated that the amplitudes of the very long waves become usually too small in the free atmosphere, due to the sparse and very irregular distribution of upper air observations. This also applies to the four-dimensional data assimilation experiments, since the amplitudes of the very long waves are usually underpredicted. The numerical experiments reported here show that if the very long waves have these kinds of amplitude errors in the upper troposphere or lower stratosphere the error is rapidly propagated (within a day or two) to the surface and to the lower troposphere.