902 resultados para Early Animal Evolution
Resumo:
Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria for funding agencies to include requirements related to animal experiments as part of the overall scientific proposal review protocols. Such agencies are also encouraged to seriously consider and adopt the recommendations described here when awarding funds for specific projects. Specific new requirements and mandates related both to improving the welfare and scientific rigour of animal-based research models are urgently needed as part of international harmonization of standards.
Resumo:
Skeletal muscle from strength- and endurance-trained individuals represents diverse adaptive states. In this regard, AMPK-PGC-1α signaling mediates several adaptations to endurance training, while up-regulation of the Akt-TSC2-mTOR pathway may underlie increased protein synthesis after resistance exercise. We determined the effect of prior training history on signaling responses in seven strength-trained and six endurance-trained males who undertook 1 h cycling at 70% VO2peak or eight sets of five maximal repetitions of isokinetic leg extensions. Muscle biopsies were taken at rest, immediately and 3 h postexercise. AMPK phosphorylation increased after cycling in strength-trained (54%; P<0.05) but not endurance-trained subjects. Conversely, AMPK was elevated after resistance exercise in endurance- (114%; P<0.05), but not strengthtrained subjects. Akt phosphorylation increased in endurance- (50%; P<0.05), but not strengthtrained subjects after cycling but was unchanged in either group after resistance exercise. TSC2 phosphorylation was decreased (47%; P<0.05) in endurance-trained subjects following resistance exercise, but cycling had little effect on the phosphorylation state of this protein in either group. p70S6K phosphorylation increased in endurance- (118%; P<0.05), but not strength-trained subjects after resistance exercise, but was similar to rest in both groups after cycling. Similarly, phosphorylation of S6 protein, a substrate for p70 S6K, was increased immediately following resistance exercise in endurance- (129%; P<0.05), but not strength-trained subjects. In conclusion, a degree of “response plasticity” is conserved at opposite ends of the endurancehypertrophic adaptation continuum. Moreover, prior training attenuates the exercise specific signaling responses involved in single mode adaptations to training.
Resumo:
Sing & Grow is an early intervention music therapy project presented to families with additional needs, or those at risk of experiencing disadvantage due to social and/or economic circumstances that may impact on their parenting experiences. The aim of the project is to provide short term music therapy programs to families in communities where access to such services may be limited. The program is strengths-based and focuses on building upon a parent’s capacity to relate to and respond to their child’s emotional and developmental needs.
Resumo:
Sing & Grow is a short term early intervention music therapy program for at risk families. Sing & Grow uses music to strengthen parent-child relationships by increasing positive parent-child interactions, assisting parents to bond with their children, and extending the repertoire of parents’ skills in relating to their child through interactive . Both the Australian and New Zealand governments are looking for evidence based research to highlight the effectiveness of funded programs in early childhood. As a government funded program, independent evaluation is a requirement of the delivery of the service. This paper explains the process involved in setting up and managing this large scale evaluation from engaging the evaluators and designing the project, to the data gathering stage. It describes the various challenges encountered and concludes that a highly collaborative and communicative partnership bet en researchers and clinicians is essential to ensure data can be gathered with minimal disturbance to clinical music therapy practice.