973 resultados para Dynamic task allocation
Resumo:
The Department shall staff a task force to be appointed by the governor consisting of knowledgeable citizen to perform an in-depth review of the four state mental health institutes, services provided, public benefits of the services provided, economic effects connected to the presence of the institutes that are realized by the communities in the areas served and the families of personnel and other public costs and benefits associated with the presence and availability of the four institutes. the review shall be coordinated with the proposal to be developed by the department under this section and shall submit a report providing findings and recommendations to the governor and general assembly on or before December, 15. 2009
Resumo:
During the 2010 session, the Iowa Legislature created per House File 2422 a Business Disaster Case Management Task Force. The purpose of the Task Force is to research disaster recovery case management assistance needed for businesses following a major disaster and to recommend steps for providing such assistance following disasters. The Task Force was duly constituted. Its recommendations are contained in this report. The Task Force focused on what the State of Iowa could do for itself without reliance on federal agencies or programs. It concluded that the hallmarks of any business disaster assistance must be speed of delivery and simplicity in execution. In addition, monies used to assist business recovery should be free of as many restraints on use as possible, relying on the affected businesses to judge for themselves how best to deploy capital resources.
Resumo:
The influence of different parts of the interaction potential on the microscopic behavior of simple liquid metals is investigated by molecular dynamics simulation. The role of the soft-core repulsive, short-range attractive, and long-range oscillatory forces on the properties of liquid lithium close to the triple point is analyzed by comparing the results from simulations of identical systems but truncating the potential at different distances. Special attention is paid to dynamic collective properties such as the dynamic structure factors, transverse current correlation functions, and transport coefficients. It is observed that, in general, the effects of the short-range attractive forces are important. On the contrary, the influence of the oscillatory long-range interactions is considerably less, being the most pronounced for the dynamic structure factor at long wavelengths. The results of this work suggest that the influence of the attractive forces becomes less significant when temperature and density increase.
Resumo:
The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.
Resumo:
The dependence of the dynamic properties of liquid metals and Lennard-Jones fluids on the characteristics of the interaction potentials is analyzed. Molecular-dynamics simulations of liquids in analogous conditions but assuming that their particles interact either through a Lennard-Jones or a liquid-metal potential were carried out. The Lennard-Jones potentials were chosen so that both the effective size of the particles and the depth of the potential well were very close to those of the liquid-metal potentials. In order to investigate the extent to which the dynamic properties of liquids depend on the short-range attractive interactions as well as on the softness of the potential cores, molecular-dynamics simulations of the same systems but assuming purely repulsive interactions with the same potential cores were also performed. The study includes both singleparticle dynamic properties, such as the velocity autocorrelation functions, and collective dynamic properties, such as the intermediate scattering funcfunctions, and collective dynamic properties, such as the intermediate scattering functions, the dynamic structure factors, the longitudinal and transverse current correlations, and the transport coefficients.
Resumo:
Agreed upon procedures report on the Lee County Narcotics Task Force for the period July 1, 2010 through May 31, 2012
Resumo:
This article investigates the allocation of demand risk within an incomplete contract framework. We consider an incomplete contractual relationship between a public authority and a private provider (i.e. a public-private partnership), in which the latter invests in non-verifiable cost-reducing efforts and the former invests in non-verifiable adaptation efforts to respond to changing consumer demand over time. We show that the party that bears the demand risk has fewer hold-up opportunities and that this leads the other contracting party to make more effort. Thus, in our model, bearing less risk can lead to more effort, which we describe as a new example of âeuro~counter-incentivesâeuro?. We further show that when the benefits of adaptation are important, it is socially preferable to design a contract in which the demand risk remains with the private provider, whereas when the benefits of cost-reducing efforts are important, it is socially preferable to place the demand risk on the public authority. We then apply these results to explain two well-known case studies.
Resumo:
Summary
Resumo:
Purpose: Forensic imaging and especially forensic radiology is a new trend in forensic medicine. More and more forensic institutes set up their own CT-scanner in order to perform postmortem cross-sectional imaging. Due to this trend, a new subspecialty was born: the forensic radiology. To image the vascular system after death, a postmortem CT- angiography can be performed. Methods and materials: In the Institute of Forensic Medicine in Lausanne, a science group has been created with specialists of different medical fields that has set up a new technique of forensic CT-angiography. The method consists in the creation of a postmortem circulation by the use of a modified heart lung machine. As circulating liquid Angiofil, an oily contrast agent, is injected. Results: With the aid of this technique, the whole vascular system of a deceased person can be imaged in detail without autopsy. The circulating contrast allows demonstrating the vascular system when it is under pressure, similarly to living patients. First experiences showed, that vascular pathologies such as cardiac tamponade and aortic dissection can be well demonstrated. Since the oily Angiofil strictly remains in the intravascular space, no artifacts had been observed during the CT-examination and the later performed autopsy. Conclusion: Post-mortem dynamic CT angiography is of great advantage in forensic pathology, because the detailed mapping of the entire vascular system is almost impossible with conventional autopsy tools.
Resumo:
The present research project was designed to identify the typical Iowa material input values that are required by the Mechanistic-Empirical Pavement Design Guide (MEPDG) for the Level 3 concrete pavement design. It was also designed to investigate the existing equations that might be used to predict Iowa pavement concrete for the Level 2 pavement design. In this project, over 20,000 data were collected from the Iowa Department of Transportation (DOT) and other sources. These data, most of which were concrete compressive strength, slump, air content, and unit weight data, were synthesized and their statistical parameters (such as the mean values and standard variations) were analyzed. Based on the analyses, the typical input values of Iowa pavement concrete, such as 28-day compressive strength (f’c), splitting tensile strength (fsp), elastic modulus (Ec), and modulus of rupture (MOR), were evaluated. The study indicates that the 28-day MOR of Iowa concrete is 646 + 51 psi, very close to the MEPDG default value (650 psi). The 28-day Ec of Iowa concrete (based only on two available data of the Iowa Curling and Warping project) is 4.82 + 0.28x106 psi, which is quite different from the MEPDG default value (3.93 x106 psi); therefore, the researchers recommend re-evaluating after more Iowa test data become available. The drying shrinkage (εc) of a typical Iowa concrete (C-3WR-C20 mix) was tested at Concrete Technology Laboratory (CTL). The test results show that the ultimate shrinkage of the concrete is about 454 microstrain and the time for the concrete to reach 50% of ultimate shrinkage is at 32 days; both of these values are very close to the MEPDG default values. The comparison of the Iowa test data and the MEPDG default values, as well as the recommendations on the input values to be used in MEPDG for Iowa PCC pavement design, are summarized in Table 20 of this report. The available equations for predicting the above-mentioned concrete properties were also assembled. The validity of these equations for Iowa concrete materials was examined. Multiple-parameters nonlinear regression analyses, along with the artificial neural network (ANN) method, were employed to investigate the relationships among Iowa concrete material properties and to modify the existing equations so as to be suitable for Iowa concrete materials. However, due to lack of necessary data sets, the relationships between Iowa concrete properties were established based on the limited data from CP Tech Center’s projects and ISU classes only. The researchers suggest that the resulting relationships be used by Iowa pavement design engineers as references only. The present study furthermore indicates that appropriately documenting concrete properties, including flexural strength, elastic modulus, and information on concrete mix design, is essential for updating the typical Iowa material input values and providing rational prediction equations for concrete pavement design in the future.
Resumo:
The present research project was designed to determine thermal properties, such as coefficient of thermal expansion (CTE) and thermal conductivity, of Iowa concrete pavement materials. These properties are required as input values by the Mechanistic-Empirical Pavement Design Guide (MEPDG). In this project, a literature review was conducted to determine the factors that affect thermal properties of concrete and the existing prediction equations for CTE and thermal conductivity of concrete. CTE tests were performed on various lab and field samples of portland cement concrete (PCC) at the Iowa Department of Transportation and Iowa State University. The variations due to the test procedure, the equipment used, and the consistency of field batch materials were evaluated. The test results showed that the CTE variations due to test procedure and batch consistency were less than 5%, and the variation due to the different equipment was less than 15%. Concrete CTE values were significantly affected by different types of coarse aggregate. The CTE values of Iowa concrete made with limestone+graval, quartzite, dolomite, limestone+dolomite, and limestone were 7.27, 6.86, 6.68, 5.83, and 5.69 microstrain/oF (13.08, 12.35, 12.03, 10.50, and 10.25 microstrain/oC), respectively, which were all higher than the default value of 5.50 microstrain/oF in the MEPDG program. The thermal conductivity of a typical Iowa PCC mix and an asphalt cement concrete (ACC) mix (both with limestone as coarse aggregate) were tested at Concrete Technology Laboratory in Skokie, Illinois. The thermal conductivity was 0.77 Btu/hr•ft•oF (1.33 W/m•K) for PCC and 1.21 Btu/hr•ft•oF (2.09 W/m•K) for ACC, which are different from the default values (1.25 Btu/hr•ft•oF or 2.16 W/m•K for PCC and 0.67 Btu/hr•ft•oF or 1.16 W/m•K for ACC) in the MEPDG program. The investigations onto the CTE of ACC and the effects of concrete materials (such as cementitious material and aggregate types) and mix proportions on concrete thermal conductivity are recommended to be considered in future studies.
Resumo:
Disorders of language, spatial perception, attention, memory, calculation and praxis are a frequent consequence of acquired brain damage [in particular, stroke and traumatic brain injury (TBI)] and a major determinant of disability. The rehabilitation of aphasia and, more recently, of other cognitive disorders is an important area of neurological rehabilitation. We report here a review of the available evidence about effectiveness of cognitive rehabilitation. Given the limited number and generally low quality of randomized clinical trials (RCTs) in this area of therapeutic intervention, the Task Force considered, besides the available Cochrane reviews, evidence of lower classes which was critically analysed until a consensus was reached. In particular, we considered evidence from small group or single cases studies including an appropriate statistical evaluation of effect sizes. The general conclusion is that there is evidence to award a grade A, B or C recommendation to some forms of cognitive rehabilitation in patients with neuropsychological deficits in the post-acute stage after a focal brain lesion (stroke, TBI). These include aphasia therapy, rehabilitation of unilateral spatial neglect (ULN), attentional training in the post-acute stage after TBI, the use of electronic memory aids in memory disorders, and the treatment of apraxia with compensatory strategies. There is clearly a need for adequately designed studies in this area, which should take into account specific problems such as patient heterogeneity and treatment standardization.