972 resultados para Density functional theory calculations
Resumo:
Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential functions and the system size to be investigated can be extended to ~106 atoms. The thermodynamic properties of model fluids are mainly determined by macroscopic quantities, like temperature, pressure, density. The quantum effects on thermodynamic properties like melting point, surface tension are not dominant. In this work, we mainly investigated the melting point, surface tension (liquid-vapor and liquid-solid) of model fluids including Lennard-Jones model, Stockmayer model and a couple of water models (TIP4P/Ew, TIP5P/Ew) by means of MD simulation. In addition, some new structures of water confined in carbon nanotube were discovered and transport behaviors of water and ions through nano-channels were also revealed.
Resumo:
The ( Z)-4,4,4-trifluoro-3-(2-hydroxyethylamino)-1-(2-hydroxyphenyl)-2-buten-1-one (C12H12F3NO3) compound was thoroughly studied by IR, Raman, UV-visible, and C-13 and F-19 NMR spectroscopies. The solid-state molecular structure was determined by X-ray diffraction methods. It crystallizes in the P2(1)/c space group with a = 12.1420(4) angstrom, b = 7.8210(3) angstrom, c := 13.8970(5) angstrom, beta = 116.162(2)degrees, and Z = 4 molecules per unit cell. The molecule shows a nearly planar molecular skeleton, favored by intramolecular OH center dot center dot center dot 0 and NH center dot center dot center dot 0 bonds, which are arranged in the lattice as an OH center dot center dot center dot 0 bonded polymer coiled around crystallographic 2-fold screw-axes. The three postulated tautomers were evaluated using quantum chemical calculations. The lowest energy tautomer (I) calculated with density functional theory methods agrees with the observed crystal structure. The structural and conformational properties are discussed considering the effect of the intra- and intermolecular hydrogen bond interactions.
Resumo:
We have investigated optical and transport properties of the molecular structure 2,3,4,5-tetraphenyl-1-phenylethynyl-cyclopenta-2,4-dienol experimentally and theoretically. The optical spectrum was calculated using Hartree-Fock-intermediate neglect of differential overlap-configuration interaction model. The experimental photoluminescence spectrum showed a peak around 470nm which was very well described by the modeling. Electronic transport measurements showed a diode-like effect with a strong current rectification. A phenomenological microscopic model based on non-equilibrium Green's function technique was proposed and a very good description electronic transport was obtained. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767457]
Resumo:
The interaction of formamide and the two transition states of its amide group rotation with one, two, or three water molecules was studied in vacuum. Great differences between the electronic structure of formamide in its most stable form and the electronic structure of the transition states were noticed. Intermolecular interactions were intense, especially in the cases where the solvent interacted with the amide and the carbonyl groups simultaneously. In the transition states, the interaction between the lone pair of nitrogen and the water molecule becomes important. With the aid of the natural bond orbitals, natural resonance theory, and electron localization function (ELF) analyses an increase in the resonance of planar formamide with the addition of successive water molecules was observed. Such observation suggests that the hydrogen bonds in the formamidewater complexes may have some covalent character. These results are also supported by the quantitative ELF analyses. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.
Resumo:
This Article reports a combined experimental and theoretical analysis on the one and two-photon absorption properties of a novel class of organic molecules with a pi-conjugated backbone based on phenylacetylene (JCM874, FD43, and FD48) and azoaromatic (YB3p2S) moieties. Linear optical properties show that the phenylacetylene-based compounds exhibit strong molar absorptivity in the UV and high fluorescence quantum yield with lifetimes of approximately 2.0 ns, while the azoaromatic-compound has a strong absorption in the visible region with very low fluorescence quantum yield. The two-photon absorption was investigated employing nonlinear optical techniques and quantum chemical calculations based on the response functions formalism within the density functional theory framework. The experimental data revealed well-defined 2PA spectra with reasonable cross-section values in the visible and IR. Along the nonlinear spectra we observed two 2PA allowed bands, as well as the resonance enhancement effect due to the presence of one intermediate one-photon allowed state. Quantum chemical calculations revealed that the 2PA allowed bands correspond to transitions to states that are also one-photon allowed, indicating the relaxation of the electric-dipole selection rules. Moreover, using the theoretical results, we were able to interpret the experimental trends of the 2PA spectra. Finally, using a few-energy-level diagram, within the sum-over-essential states approach, we observed strong qualitative and quantitative correlation between experimental and theoretical results.
Resumo:
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The magnetic properties of Mn nanostructures on the Fe(001) surface have been studied using the noncollinear first-principles real space-linear muffin-tin orbital-atomic sphere approximation method within density-functional theory. We have considered a variety of nanostructures such as adsorbed wires, pyramids, and flat and intermixed clusters of sizes varying from two to nine atoms. Our calculations of interatomic exchange interactions reveal the long-range nature of exchange interactions between Mn-Mn and Mn-Fe atoms. We have found that the strong dependence of these interactions on the local environment, the magnetic frustration, and the effect of spin-orbit coupling lead to the possibility of realizing complex noncollinear magnetic structures such as helical spin spiral and half-skyrmion.
Resumo:
An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the pi-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.
Resumo:
This paper reports the spectroscopic study on the structural differences of thermally induced cross-linking segments in polyaniline in its emeraldine salt (PANI-ES) and base (PANI-EB) forms. Casting films of PANI-ES (ES-film) and PANI-EB (EB-film) were prepared and heated at 150 degrees C under atmospheric air for 30 min. Raman spectra excited at 632.8 nm of heated ES-film presented the characteristic bands of phenazine-like structures at 1638, 1392, and 575 cm(-1), whereas EB-film showed lower relative intensities for these bands. The lower content of phenazine-like segments in heated EB-film is related to residual polaronic segments from preparation procedures, as revealed by Raman. This statement was confirmed by a sequence of thermal and doping experiments in both films. Quantum-chemical calculations by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) showed that the phenazine-like structure presents the intense Raman band at 1350 cm(-1) due to heterocycle breathing mode, and the non-phenazine-like structure (substituted hydrophenazine-type) presents higher energy for HOMO-LUMO transition, indicating the lack of conjugation in the heterocycle compared with the phenazine-like structure. According to experimental and theoretical data reported here, it is proposed that only thermally treated PANI-ES presents phenazine-like rings, whereas PANI-EB presents heterocyclic non-aromatic structures.
Resumo:
The absolute configuration and solution-state conformers of three peperomin-type secolignans isolated from Peperomia blanda (Piperaceae) are unambiguously determined by using vibrational circular dichroism (VCD) spectroscopy associated with density functional theory (DFT) calculations. Advantages of VCD over the electronic form of CD for the analysis of diastereomers are also discussed. This work extends our growing knowledge about secondary metabolites within the Piperaceae family species while providing a definitive and straightforward method to assess the absolute stereochemistry of secolignans.
Resumo:
The structural distortions resulting from the size mismatch between the Eu2+ luminescent centre and the host Ba2+ cation as well as the electronic structure of BaAl2O4:Eu2+(,Dy3+) were studied using density functional theory (DFT) calculations and synchrotron radiation (SR) luminescence spectroscopy. The modified interionic distances as well as differences in the total energies indicate that Eu2+ prefers the smaller of the two possible Ba sites in the BaAl2O4 host. The calculated Eu2+ 4f(7) and 4f(6)5d(1) ground level energies confirm that the excited electrons can reach easily the conduction band for subsequent trapping. In addition to the green luminescence, a weak blue emission band was observed in BaAl2O4:Eu2+,Dy3+ probably due to the creation of a new Ba2+ site due to the effect of water exposure on the host. (C) 2012 Optical Society of America
Resumo:
Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.
Resumo:
Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.