976 resultados para Damage Detection
Resumo:
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real-time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus-Israel (TYLCV-IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B.tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality-assurance purposes, two internal control assays were included in the assay panel for the co-amplification of solanaceous plant DNA or B.tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV-IL, 100 plasmid copies of ToLCV, 500fg B.tabaci MEAM1 and 300fg B.tabaci MED DNA. Evaluated methods for routine testing of field-collected whiteflies are presented, including protocols for processing B.tabaci captured on yellow sticky traps and for bulking of multiple B.tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality-assured diagnostic method for the identification and discrimination of tomato-infecting begomovirus and B.tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease-management programmes both in Australia and worldwide.
Resumo:
This study compared pregnancy rates (PRs) and costs per calf born after fixed-time artificial insemination (FTAI) or AI after estrus detection (i.e., estrus detection and AI, EDAI), before and after a single PGF2α treatment in Bos indicus (Brahman-cross) heifers. On Day 0, the body weight, body condition score, and presence of a CL (46% of heifers) were determined. The heifers were then alternately allocated to one of two FTAI groups (FTAI-1, n = 139) and (FTAI-2, n = 141) and an EDAI group (n = 273). Heifers in the FTAI groups received an intravaginal progesterone-releasing device (IPRD; 0.78 g of progesterone) and 1 mg of estradiol benzoate intramuscularly (im) on Day 0. Eight days later, the IPRD was removed and heifers received 500 μg of PGF2α and 300 IU of eCG im; 24 hours later, they received 1 mg estradiol benzoate im and were submitted to FTAI 30 to 34 hours later (54 and 58 hours after IPRD removal). Heifers in the FTAI-2 group started treatment 8 days after those in the FTAI-1 group. Heifers in the EDAI group were inseminated approximately 12 hours after the detection of estrus between Days 4 and 9 at which time the heifers that had not been detected in estrus received 500 μg of PGF2α im and EDAI continued until Day 13. Heifers in the FTAI groups had a higher overall PR (proportion pregnant as per the entire group) than the EDAI group (34.6% vs. 23.2%; P = 0.003), however, conception rate (PR of heifers submitted for AI) tended to favor the estrus detection group (34.6% vs. 44.1%; P = 0.059). The cost per AI calf born was estimated to be $267.67 and $291.37 for the FTAI and EDAI groups, respectively. It was concluded that in Brahman heifers typical of those annually mated in northern Australia FTAI compared with EDAI increases the number of heifers pregnant and reduces the cost per calf born.
Resumo:
Ginger is considered by many people to be the outstanding member among 1400 other species in the family Zingiberaceae. Not only it is a valuable spice used by cooks throughout the world to impart unique flavour to their dishes but it also has a long track record in some Chinese and Indian cultures for treating common human ailments such as colds and headaches. Ginger has recently attracted considerable attention for its anti-inflammatory, antibacterial and antifungal properties. However, ginger as a crop is also susceptible to at least 24 different plant pathogens, including viruses, bacteria, fungi and nematodes. Of these, Pythium spp. (within the kingdom Stramenopila, phyllum Oomycota) are of most concern because various species can cause rotting and yield loss on ginger at any of the growth stages including during postharvest storage. Pythium gracile was the first species in the genus to be reported as a ginger pathogen, causing Pythium soft rot disease in India in 1907. Thereafter, numerous other Pythium spp. have been recorded from ginger growing regions throughout the world. Today, 15 Pythium species have been implicated as pathogens of the soft rot disease. Because accurate identification of a pathogen is the cornerstone of effective disease management programs, this review will focus on how to detect, identify and control Pythium spp. in general, with special emphasis on Pythium spp. associated with soft rot on ginger.
Resumo:
Masonry under compression is affected by the properties of its constituents and their interfaces. In spite of extensive investigations of the behaviour of masonry under compression, the information in the literature cannot be regarded as comprehensive due to ongoing inventions of new generation products – for example, polymer modified thin layer mortared masonry and drystack masonry. As comprehensive experimental studies are very expensive, an analytical model inspired by damage mechanics is developed and applied to the prediction of the compressive behaviour of masonry in this paper. The model incorporates a parabolic progressively softening stress-strain curve for the units and a progressively stiffening stress-strain curve until a threshold strain for the combined mortar and the unit-mortar interfaces is reached. The model simulates the mutual constraints imposed by each of these constituents through their respective tensile and compressive behaviour and volumetric changes. The advantage of the model is that it requires only the properties of the constituents and considers masonry as a continuum and computes the average properties of the composite masonry prisms/wallettes; it does not require discretisation of prism or wallette similar to the finite element methods. The capability of the model in capturing the phenomenological behaviour of masonry with appropriate elastic response, stiffness degradation and post peak softening is presented through numerical examples. The fitting of the experimental data to the model parameters is demonstrated through calibration of some selected test data on units and mortar from the literature; the calibrated model is shown to predict the responses of the experimentally determined masonry built using the corresponding units and mortar quite well. Through a series of sensitivity studies, the model is also shown to predict the masonry strength appropriately for changes to the properties of the units and mortar, the mortar joint thickness and the ratio of the height of unit to mortar joint thickness. The unit strength is shown to affect the masonry strength significantly. Although the mortar strength has only a marginal effect, reduction in mortar joint thickness is shown to have a profound effect on the masonry strength. The results obtained from the model are compared with the various provisions in the Australian Masonry Structures Standard AS3700 (2011) and Eurocode 6.
Resumo:
The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95 of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.
Resumo:
Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Resumo:
Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Resumo:
This study aimed to define the frequency of resistance to critically important antimicrobials (CIAs) [i.e. extended-spectrum cephalosporins (ESCs), fluoroquinolones (FQs) and carbapenems] among Escherichia coli isolates causing clinical disease in Australian food-producing animals. Clinical E. coli isolates (n = 324) from Australian food-producing animals [cattle (n = 169), porcine (n = 114), poultry (n = 32) and sheep (n = 9)] were compiled from all veterinary diagnostic laboratories across Australia over a 1-year period. Isolates underwent antimicrobial susceptibility testing to 18 antimicrobials using the Clinical and Laboratory Standards Institute disc diffusion method. Isolates resistant to CIAs underwent minimum inhibitory concentration determination, multilocus sequence typing (MLST), phylogenetic analysis, plasmid replicon typing, plasmid identification, and virulence and antimicrobial resistance gene typing. The 324 E. coli isolates from different sources exhibited a variable frequency of resistance to tetracycline (29.0–88.6%), ampicillin (9.4–71.1%), trimethoprim/sulfamethoxazole (11.1–67.5%) and streptomycin (21.9–69.3%), whereas none were resistant to imipenem or amikacin. Resistance was detected, albeit at low frequency, to ESCs (bovine isolates, 1%; porcine isolates, 3%) and FQs (porcine isolates, 1%). Most ESC- and FQ-resistant isolates represented globally disseminated E. coli lineages (ST117, ST744, ST10 and ST1). Only a single porcine E. coli isolate (ST100) was identified as a classic porcine enterotoxigenic E. coli strain (non-zoonotic animal pathogen) that exhibited ESC resistance via acquisition of blaCMY-2. This study uniquely establishes the presence of resistance to CIAs among clinical E. coli isolates from Australian food-producing animals, largely attributed to globally disseminated FQ- and ESC-resistant E. coli lineages.
Resumo:
Topic detection and tracking (TDT) is an area of information retrieval research the focus of which revolves around news events. The problems TDT deals with relate to segmenting news text into cohesive stories, detecting something new, previously unreported, tracking the development of a previously reported event, and grouping together news that discuss the same event. The performance of the traditional information retrieval techniques based on full-text similarity has remained inadequate for online production systems. It has been difficult to make the distinction between same and similar events. In this work, we explore ways of representing and comparing news documents in order to detect new events and track their development. First, however, we put forward a conceptual analysis of the notions of topic and event. The purpose is to clarify the terminology and align it with the process of news-making and the tradition of story-telling. Second, we present a framework for document similarity that is based on semantic classes, i.e., groups of words with similar meaning. We adopt people, organizations, and locations as semantic classes in addition to general terms. As each semantic class can be assigned its own similarity measure, document similarity can make use of ontologies, e.g., geographical taxonomies. The documents are compared class-wise, and the outcome is a weighted combination of class-wise similarities. Third, we incorporate temporal information into document similarity. We formalize the natural language temporal expressions occurring in the text, and use them to anchor the rest of the terms onto the time-line. Upon comparing documents for event-based similarity, we look not only at matching terms, but also how near their anchors are on the time-line. Fourth, we experiment with an adaptive variant of the semantic class similarity system. The news reflect changes in the real world, and in order to keep up, the system has to change its behavior based on the contents of the news stream. We put forward two strategies for rebuilding the topic representations and report experiment results. We run experiments with three annotated TDT corpora. The use of semantic classes increased the effectiveness of topic tracking by 10-30\% depending on the experimental setup. The gain in spotting new events remained lower, around 3-4\%. The anchoring the text to a time-line based on the temporal expressions gave a further 10\% increase the effectiveness of topic tracking. The gains in detecting new events, again, remained smaller. The adaptive systems did not improve the tracking results.
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.
Resumo:
Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had difuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No diferences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with difuse complications, mean temperature diferences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or difuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings.
Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis
Resumo:
Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with Bsplines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.
Resumo:
Due to the advent of varied types of masonry systems a comprehensive failure mechanism of masonry essential for the understanding of its behaviour is impossible to be determined from experimental testing. As masonry is predominantly used in wall structures a biaxial stress state dominates its failure mechanism. Biaxial testing will therefore be necessary for each type of masonry, which is expensive and time consuming. A computational method would be advantageous; however masonry is complex to model which requires advanced computational modelling methods. This thesis has formulated a damage mechanics inspired modelling method and has shown that the method effectively determines the failure mechanisms and deformation characteristics of masonry under biaxial states of loading.
Resumo:
The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.