1000 resultados para DEPENDENT PHOTOLUMINESCENCE
Resumo:
We investigate the temperature dependence of photoluminescence (PL) and time-resolved PL on the metamorphic InGaAs quantum wells (QWs) with an emission wavelength of 1.55 mu m at room temperature. Time-resolved PL measurements reveal that the optical properties can be partly improved by introducing antimony (Sb) as a surfactant during the sample growth. The temperature dependence of the radiative lifetime is measured, showing that for QWs grown with Sb assistance, the intrinsic exciton emission is dominated when the temperature is below 60 K, while the nonradiative process becomes activated with further increases in temperature. However, without Sb assistance, the nonradiative centers are activated when the temperature is higher than 20 K.
Resumo:
The photoluminescence (PL) characteristics of GaAsSbN/GaAs epilayers grown by molecular beam epitaxy (MBE) are carefully investigated. The results show that antimony (Sb) incorporation into GaNAs material has less influence on the N-induced localization states. For the same N concentration, GaAsSbN material can reach an emission wavelength near 1.3 mum more easily than GaInNAs material. The rapid thermal annealing (RTA) experiment shows that the annealing induced rearrangement of atoms and related blueshift in GaAsSbN epilayers are smaller than those in GaNAs and GaInNAs epilayers. The GaAsSbN material can keep a longer emission wavelength near 1.3 mum-emission even after the annealing treatment. Raman spectroscopy analysis gives further insight into the structure stability of GaAsSbN material after annealing. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
High-density and uniform well-aligned ZnO sub-micron rods are synthesized on the silicon substrate over a large area. The morphology, and structure of the ZnO sub-micron rods are investigated by x-ray diffraction, transmission electron microscopy and Raman spectra. It is found that the ZnO sub-micron rods are of high crystal quality with the diameter in the range of 400-600 nm and the length of several micrometres long. The optical properties were studied bill photoluminescence spectra. The results show that the intensity of the ultraviolet emission at 3.3 eV is rather high, meanwhile the deep level transition centred at about 2.38 eV is weak. The free exciton emission could also be observed at low, temperature, which implies the high optical quality of the ZnO sub-micron rods. This growth technique provides one effective way to fabricate the high crystal quality ZnO nanowires array, which is very important for potential applications in the new-type optoelectronic nanodevices.
Resumo:
Raman measurements and photoluminescence (PL) were performed on the metal-organic chemical-vapor deposition epitaxially grown GaN before and after the implantation with Er and Er+O. Several Raman defect modes have emerged from the implantation-damaged samples. The structures around 300 and 595 cm(-1) modes are attributed to the disorder-activated Raman scattering, whereas the 670 cm(-1) peak is assigned to nitrogen-vacancy-related defect scattering. One additional peak at 360 cm(-1) arises after Er+O coimplantation. This Raman peak is attributed to the O-implantation-induced defect complex. The appearance of the 360 cm(-1) mode results in the decrease of the Er3+ -related infrared PL intensity for the GaN:Er+O samples. (C) 2004 American Institute of Physics.
Resumo:
Novel room temperature photoluminescence (PL) of the Ge/Si islands in multilayer structure grown on silicon-on-insulator substrates is investigated. The cavity formed by the mirrors at the surface and the buried SiO2 interface has a strong effect on the PL emission. The peak position is consistent with the theoretical calculation and independent of the exciting power, which is the evidence of cavity effect on the room temperature photoluminescence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report a systematical study on the molecular beam epitaxy growth and optical property of (GaAs1-xSbx/In-y Ga1-yAs)/GaAs bilayer quantum well (BQW) structures. It is shown that the growth temperature of the wells and the sequence of layer growth have significant influence on the interface quality and the subsequent photoluminescence (PL) spectra. Under optimized growth conditions, three high-quality (GaAsSb0.29/In0.4GaAs)/GaAs BQWs are successfully fabricated and a room temperature PL at 1314 nm is observed. The transition mechanism in the BQW is also discussed by photoluminescence and photoreflectance measurements. The results confirm experimentally a type-II band alignment of the interface between the GaAsSb and InGaAs layers.
Resumo:
Resonant tunnelling diodes with different structures were grown. Their photoluminescence spectra were investigated. By contrast, the luminescence in the quantum well is separated from that of other epilayers. The result is obtained that the exciton of the luminescence in the quantum well is partly come from the cap layer in the experiment. So the photoluminescence spectrum is closely related to the electron transport in the resonant tunnelling diode structure. This offers a method by which the important performance of resonant tunnelling diode could be forecast by analysing the integrated photoluminescence intensities.
Resumo:
Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The structure and photoluminscence (PL) properties of Pr-implanted GaN thin films have been studied. RBS/channeling technique was used to explore the damage recovery at high annealing temperature and study the dependence of the radiation damage with ion implantation direction. A complete recovery of the ion implantation damage cannot be achieved at annealing temperatures up to 1050degreesC. It is found that the channeling implantation results in the decrease of the damage. The PL experimental results indicate that the PL efficiency increases exponentially with annealing temperature up to the maximum temperature of 1050degreesC. Moreover, the PL intensity is also seriously affected by ion implantation geometries. The PL intensity for the sample implanted along channeled direction is nearly 2 times more intense than that observed from the sample implanted along random direction. The thermal quenching of PL intensity from 10 to 300K for sample annealed at 1050degreesC is only 30%. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
InAs self-organized nanostructures in In0.52Al0.48As matrix have been grown on InP (001) substrates by molecular beam epitaxy. The morphologies of the nanostructures are found to be strongly dependent on the growth rate of the InAs layer. By increasing the growth rate from 0.005 to 0.35 ML/s, the morphology of the nanostructure changes from wire to elongated dot and then changes back to wire again. Polarized photoluminescence of the InAs quantum wires and quantum dots are performed at 77 K, which are characterized by strong optical anisotropies. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Sharp and strong room-temperature photoluminescence (PL) of the Si0.59Ge0.41/Si multiquantum wells grown on the silicon-on-insulator substrate is investigated. The cavity formed by the mirrors at the surface and the buried SiO2 interface enhances the PL emission and has a wavelength-selective effect on the luminescence. The peak position is consistent with the simulation result and independent of the exciting power, which indicates a strong cavity effect on the room-temperature PL. (C) 2004 American Institute of Physics.
Resumo:
Erbium was implanted with energies 200 or 400 keV into epitaxial (0 0 0 1) GaN grown on (0 0 0 1) Al2O3 substrate at room temperature (RT) and 400degreesC. Both random (10degrees tilt from c-axis) and channeled (along c-axis) implantations were studied. RBS/Channeling technique was used to study the dependences of the radiation damage with ion implantation energy, direction and temperature. It was found that the channeling implantation or elevating temperature implantation both resulted in the decrease of the damage. Moreover, the Photoluminscence (PL) properties of Er-implanted GaN thin filius were also studied. The experimental results indicate that the PL intensity can be enhanced by raising implantation energy or implanting along channeling direction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Er photoluminescence (Er PL) and dangling bonds (DBs) of annealed Er-doped hydrogenated amorphous silicon nitride (a-SiN:H(Er)) with various concentrations of nitrogen are studied in the temperature range 62-300 K. Post-annealing process is employed to change the DBs density of a-SiN:H(Er). PL spectra, DBs density and H, N concentrations are measured. The intensity of Er PL displays complicated relation with Si DBs density within the annealing temperature range 200-500 degreesC. The intensity of Er PL first increases with decreasing density of Si dangling bonds owing to the structural relaxation up to 250 degreesC, and continues to increase up to 350 degreesC even though the density of Si DBs increases due to the improvement of symmetry environment of Er3+. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Nitrogen-doped beta-Ga2O3 nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission around 1.67 eV, with a characteristic decay time around 136 mus at 77 K, much shorter than that of the blue emission (a decay time of 457 mus). The time decay and temperature-dependent luminescence spectra were calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the experimental data. This result suggests that the observed novel red-light emission originates from the recombination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to nitrogen doping.
Resumo:
The photoluminescence of four epitaxial ZnS: Te samples with Te concentration from 0.5% to 3.1% was investigated at different temperature and ambient pressure. Two well-known emission bands related to the isolated Te-1 and Te-2 pair isoelectronic centers were observed for the samples with Te concentrations of 0.5% and 0.65%. For the samples with Te concentrations of 1.4% and 3.1%, only was the Te-2-related peak observed. The pressure behaviors of these emission bands, were studied at 15 K. The Te-1 -related band has faster pressure shift to higher energy than ZnS band gap. On the other hand, the pressure coefficient of Te-2 -related bands is smaller than that of the ZnS band gap. According to a Koster-Slater model, we found that the increase of the density bandwidth of the valence band with pressure is the main reason for the faster shift of the Te-1 centers, while the relatively large difference in the pressure behavior of the Te-1 and Te-2 centers is mainly due to the difference in the pressure-induced enhancement of the impurity potential on Te-1 and Te-2 centers.