944 resultados para Construction companies
Resumo:
Analytical solution is presented to convert a given driving-point impedance function (in s-domain) into a physically realisable ladder network with inductive coupling between any two sections and losses considered. The number of sections in the ladder network can vary, but its topology is assumed fixed. A study of the coefficients of the numerator and denominator polynomials of the driving-point impedance function of the ladder network, for increasing number of sections, led to the identification of certain coefficients, which exhibit very special properties. Generalised expressions for these specific coefficients have also been derived. Exploiting their properties, it is demonstrated that the synthesis method essentially turns out to be an exercise of solving a set of linear, simultaneous, algebraic equations, whose solution directly yields the ladder network elements. The proposed solution is novel, simple and guarantees a unique network. Presently, the formulation can synthesise a unique ladder network up to six sections.
Resumo:
This paper reports the results of employing an artificial bee colony search algorithm for synthesizing a mutually coupled lumped-parameter ladder-network representation of a transformer winding, starting from its measured magnitude frequency response. The existing bee colony algorithm is suitably adopted by appropriately defining constraints, inequalities, and bounds to restrict the search space and thereby ensure synthesis of a nearly unique ladder network corresponding to each frequency response. Ensuring near-uniqueness while constructing the reference circuit (i.e., representation of healthy winding) is the objective. Furthermore, the synthesized circuits must exhibit physical realizability. The proposed method is easy to implement, time efficient, and problems associated with the supply of initial guess in existing methods are circumvented. Experimental results are reported on two types of actual, single, and isolated transformer windings (continuous disc and interleaved disc).
Resumo:
A direct vinylogous Michael reaction of gamma-substituted deconjugated butenolides with nitroolefins has been developed with the help of a newly identified quinine-derived bifunctional catalyst, allowing the synthesis of densely functionalized products with contiguous quaternary and tertiary stereocenters in excellent yield with perfect diastereoselectivity (>20 : 1 dr) and high enantioselectivity (up to 99 : 1 er).
Resumo:
Background information. The pathology causing stages of the human malaria parasite Plasmodium falciparum reside within red blood cells that are devoid of any regulated transport system. The parasite, therefore, is entirely responsible for mediating vesicular transport within itself and in the infected erythrocyte cytoplasm, and it does so in part via its family of 11 Rab GTPases. Putative functions have been ascribed to Plasmodium Rabs due to their homology with Rabs of yeast, particularly with Saccharomyces that has an equivalent number of rab/ypt genes and where analyses of Ypt function is well characterized. Results. Rabs are important regulators of vesicular traffic due to their capacity to recruit specific effectors. In order to identify P. falciparum Rab (PfRab) effectors, we first built a Ypt-interactome by exploiting genetic and physical binding data available at the Saccharomyces genome database (SGD). We then constructed a PfRab-interactome using putative parasite Rab-effectors identified by homology to Ypt-effectors. We demonstrate its potential by wet-bench testing three predictions; that casein kinase-1 (PfCK1) is a specific Rab5B interacting protein and that the catalytic subunit of cAMP-dependent protein kinase A (PfPKA-C) is a PfRab5A and PfRab7 effector. Conclusions. The establishment of a shared set of physical Ypt/PfRab-effector proteins sheds light on a core set Plasmodium Rab-interactants shared with yeast. The PfRab-interactome should benefit vesicular trafficking studies in malaria parasites. The recruitment of PfCK1 to PfRab5B+ and PfPKA-C to PfRab5A+ and PfRab7+ vesicles, respectively, suggests that PfRab-recruited kinases potentially play a role in early and late endosome function in malaria parasites.
Resumo:
Competition under control: A practical and efficient direct asymmetric vinylogous Michael reaction of deconjugated butenolides has been developed (see scheme). The products of this reaction, highly functionalized chiral succinimides, are obtained in excellent yield with high diastereoselectivity (up to d.r.=18:1) and outstanding enantioselectivity (up to e.r.=99.5:0.5).
Resumo:
In a study directed toward the bioactive natural product garsubellin A, an expedient route to the bicyclo 3.3.1]nonan-9-one bearing tricyclic core, with a bridgehead anchored tetrahydrofuran ring, is delineated. The approach emanating from commercially available dimedone involved a DIBAL-H mediated retro aldol/re-aldol cyclization cascade and a PCC mediated oxidative cyclization as the key steps. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we give a compositional (or inductive) construction of monitoring automata for LTL formulas. Our construction is similar in spirit to the compositional construction of Kesten and Pnueli [5]. We introduce the notion of hierarchical Büchi automata and phrase our constructions in the framework of these automata. We give detailed constructions for all the principal LTL operators including past operators, along with proofs of correctness of the constructions.
Resumo:
The problem addressed in this paper is concerned with an important issue faced by any green aware global company to keep its emissions within a prescribed cap. The specific problem is to allocate carbon reductions to its different divisions and supply chain partners in achieving a required target of reductions in its carbon reduction program. The problem becomes a challenging one since the divisions and supply chain partners, being autonomous, may exhibit strategic behavior. We use a standard mechanism design approach to solve this problem. While designing a mechanism for the emission reduction allocation problem, the key properties that need to be satisfied are dominant strategy incentive compatibility (DSIC) (also called strategy-proofness), strict budget balance (SBB), and allocative efficiency (AE). Mechanism design theory has shown that it is not possible to achieve the above three properties simultaneously. In the literature, a mechanism that satisfies DSIC and AE has recently been proposed in this context, keeping the budget imbalance minimal. Motivated by the observation that SBB is an important requirement, in this paper, we propose a mechanism that satisfies DSIC and SBB with slight compromise in allocative efficiency. Our experimentation with a stylized case study shows that the proposed mechanism performs satisfactorily and provides an attractive alternative mechanism for carbon footprint reduction by global companies.
Resumo:
Construction of high rate Space Time Block Codes (STBCs) with low decoding complexity has been studied widely using techniques such as sphere decoding and non Maximum-Likelihood (ML) decoders such as the QR decomposition decoder with M paths (QRDM decoder). Recently Ren et al., presented a new class of STBCs known as the block orthogonal STBCs (BOSTBCs), which could be exploited by the QRDM decoders to achieve significant decoding complexity reduction without performance loss. The block orthogonal property of the codes constructed was however only shown via simulations. In this paper, we give analytical proofs for the block orthogonal structure of various existing codes in literature including the codes constructed in the paper by Ren et al. We show that codes formed as the sum of Clifford Unitary Weight Designs (CUWDs) or Coordinate Interleaved Orthogonal Designs (CIODs) exhibit block orthogonal structure. We also provide new construction of block orthogonal codes from Cyclic Division Algebras (CDAs) and Crossed-Product Algebras (CPAs). In addition, we show how the block orthogonal property of the STBCs can be exploited to reduce the decoding complexity of a sphere decoder using a depth first search approach. Simulation results of the decoding complexity show a 30% reduction in the number of floating point operations (FLOPS) of BOSTBCs as compared to STBCs without the block orthogonal structure.
Resumo:
The analytic signal (AS) was proposed by Gabor as a complex signal corresponding to a given real signal. The AS has a one-sided spectrum and gives rise to meaningful spectral averages. The Hilbert transform (HT) is a key component in Gabor's AS construction. We generalize the construction methodology by employing the fractional Hilbert transform (FrHT), without going through the standard fractional Fourier transform (FrFT) route. We discuss some properties of the fractional Hilbert operator and show how decomposition of the operator in terms of the identity and the standard Hilbert operators enables the construction of a family of analytic signals. We show that these analytic signals also satisfy Bedrosian-type properties and that their time-frequency localization properties are unaltered. We also propose a generalized-phase AS (GPAS) using a generalized-phase Hilbert transform (GPHT). We show that the GPHT shares many properties of the FrHT, in particular, selective highlighting of singularities, and a connection with Lie groups. We also investigate the duality between analyticity and causality concepts to arrive at a representation of causal signals in terms of the FrHT and GPHT. On the application front, we develop a secure multi-key single-sideband (SSB) modulation scheme and analyze its performance in noise and sensitivity to security key perturbations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the case history of the construction of a 3 m high embankment on the geocell foundation over the soft settled red mud. Red mud is a waste product from the Bayer process of Aluminum industry. Geotechnical problems of the site, the design of the geocell foundation based on experimental investigation and the construction sequences of the geocell foundations in the field are discussed in the paper. Based on the experimental studies, an analytical model was also developed to estimate the load carrying capacity of the soft clay bed reinforced with geocell and combination of geocell and geogrid. The results of the experimental and analytical studies revealed that the use of combination of geocell and the geogrid is always beneficial than using the geocell alone. Hence, the combination of geocell and geogrid was recommended to stabilize the embankment base. The reported embankment is located in Lanjigharh (Orissa) in India. Construction of the embankment on the geocell foundation has already been completed. The constructed embankmenthas already sustained two monsoon rains without any cracks and seepage. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the storage-repair-bandwidth (SRB) trade-off curve of regenerating codes is reformulated to yield a tradeoff between two global parameters of practical relevance, namely information rate and repair rate. The new information-repair-rate (IRR) tradeoff provides a different and insightful perspective on regenerating codes. For example, it provides a new motivation for seeking to investigate constructions corresponding to the interior of the SRB tradeoff. Interestingly, each point on the SRB tradeoff corresponds to a curve in the IRR tradeoff setup. We characterize completely, functional repair under the IRR framework, while for exact repair, an achievable region is presented. In the second part of this paper, a rate-half regenerating code for the minimum storage regenerating point is constructed that draws upon the theory of invariant subspaces. While the parameters of this rate-half code are the same as those of the MISER code, the construction itself is quite different.
Binaural Signal Processing Motivated Generalized Analytic Signal Construction and AM-FM Demodulation
Resumo:
Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.
Resumo:
In continuation of our interest in pyrazole based multifunctional metal-organic frameworks (MOFs), we report herein the construction of a series of Co(II) MOFs using a bis-pyrazole ligand and various benzene polycarboxylic acids. Employment of different acids has resulted in different architectures ranging from a two-dimensional grid network, porous nanochannels with interesting double helical features such as supramolecular chicken wire, to three-dimensional diamondoid networks. One of the distinguishing features of the network is their larger dimensions which can be directly linked to a relatively larger size of the ligand molecule. Conformational flexibility of the ligand also plays a decisive role in determining both the dimensionality and topology of the final structure. Furthermore, chirality associated with helical networks and magnetic properties of two MOFs have also been investigated.