909 resultados para Constraint handling
Resumo:
The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.
Resumo:
During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.
Resumo:
Despite the numerous reports of difficulties experienced by health care providers in providing psychosocial care to terminally ill patients and their families, few studies have yet been undertaken to examine the effectiveness of different educational approaches to addressing these issues. The aim of this paper is to describe a programme of professional development for palliative care nurses, which is currently being offered to 181 registered nurses in Queensland, Australia. The programme is based on an action learning model and is designed to facilitate processes of reflection and peer consultation. In Part One of this paper, a review of this literature is presented to provide the background and rationale for the programme design. Details of the research programme developed to evaluate the programme will be presented in Part Two of this paper, which is to be published in the next issue of this Journal. Surveys of health professionals suggest that the demands of working with terminally ill patients are associated with a great deal of stress (Beaton and Degner 1990, Seale 1992, Vachon 1995), and emotional burden, as they are confronted with their patients' physical and emotional suffering over extended periods of time (Ullrich and Fitzgerald 1990). Key areas of concern (Lyons 1988, Bramwell 1989, Seale 1992, Copp and Dunn 1993, Wilkinson 1995) include: * Handling questions and conversations with dying patients. * Dealing with ethical and moral issues. * Handling emotions. * Giving hope. * Providing spiritual care and bereavement support. * Confronting team communication problems.
Resumo:
The YAWL Worklet Service is an effective approach to facilitating dynamic flexibility and exception handling in workflow processes. Recent additions to the Service extend its capabilities through a programming interface that provides easier access to rules storage and evaluation, and an event server that notifies listening servers and applications when exceptions are detected, which together serve enhance the functionality and accessibility of the Service's features and expand its usability to new potential domains.
Resumo:
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.
Resumo:
In the real world there are many problems in network of networks (NoNs) that can be abstracted to a so-called minimum interconnection cut problem, which is fundamentally different from those classical minimum cut problems in graph theory. Thus, it is desirable to propose an efficient and effective algorithm for the minimum interconnection cut problem. In this paper we formulate the problem in graph theory, transform it into a multi-objective and multi-constraint combinatorial optimization problem, and propose a hybrid genetic algorithm (HGA) for the problem. The HGA is a penalty-based genetic algorithm (GA) that incorporates an effective heuristic procedure to locally optimize the individuals in the population of the GA. The HGA has been implemented and evaluated by experiments. Experimental results have shown that the HGA is effective and efficient.
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
Recent studies have started to explore context-awareness as a driver in the design of adaptable business processes. The emerging challenge of identifying and considering contextual drivers in the environment of a business process are well understood, however, typical methods and models for business process design do not yet consider this context. In this paper, we describe our work on the design of a method framework and appropriate models to enable a context-aware process design approach. We report on our ongoing work with an Australian insurance provider and describe the design science we employed to develop innovative and useful artifacts as part of a context-aware method framework. We discuss the utility of these artifacts in an application in the claims handling process at the case organization.
Resumo:
Successful anatomic fitting of a total artificial heart (TAH) is vital to achieve optimal pump hemodynamics after device implantation. Although many anatomic fitting studies have been completed in humans prior to clinical trials, few reports exist that detail the experience in animals for in vivo device evaluation. Optimal hemodynamics are crucial throughout the in vivo phase to direct design iterations and ultimately validate device performance prior to pivotal human trials. In vivo evaluation in a sheep model allows a realistically sized representation of a smaller patient, for which smaller third-generation TAHs have the potential to treat. Our study aimed to assess the anatomic fit of a single device rotary TAH in sheep prior to animal trials and to use the data to develop a threedimensional, computer-aided design (CAD)-operated anatomic fitting tool for future TAH development. Following excision of the native ventricles above the atrio-ventricular groove, a prototype TAH was inserted within the chest cavity of six sheep (28–40 kg).Adjustable rods representing inlet and outlet conduits were oriented toward the center of each atrial chamber and the great vessels, with conduit lengths and angles recorded for future analysis. A threedimensional, CAD-operated anatomic fitting tool was then developed, based on the results of this study, and used to determine the inflow and outflow conduit orientation of the TAH. The mean diameters of the sheep left atrium, right atrium, aorta, and pulmonary artery were 39, 33, 12, and 11 mm, respectively. The center-to-center distance and outer-edge-to-outer-edge distance between the atria, found to be 39 ± 9 mm and 72 ± 17 mm in this study, were identified as the most critical geometries for successful TAH connection. This geometric constraint restricts the maximum separation allowable between left and right inlet ports of a TAH to ensure successful alignment within the available atrial circumference.
Resumo:
Online dating websites enable a specific form of social networking and their efficiency can be increased by supporting proactive recommendations based on participants' preferences with the use of data mining. This research develops two-way recommendation methods for people-to-people recommendation for large online social networks such as online dating networks. This research discovers the characteristics of the online dating networks and utilises these characteristics in developing efficient people-to-people recommendation methods. Methods developed support improved recommendation accuracy, can handle data sparsity that often comes with large data sets and are scalable for handling online networks with a large number of users.
Resumo:
In 1963, the National Institutes of Health (NIH) first issued guidelines for animal housing and husbandry. The most recent 2010 revision emphasizes animal care “in ways judged to be scientifically, technically, and humanely appropriate” (National Institutes of Health, 2010, p. XIII). The goal of these guidelines is to ensure humanitarian treatment of animals and to optimize the quality of research. Although these animal care guidelines cover a substantial amount of information regarding animal housing and husbandry, researchers generally do not report all these variables (see Table Table1).1). The importance of housing and husbandry conditions with respect to standardization across different research laboratories has been debated previously (Crabbe et al., 1999; Van Der Staay and Steckler, 2002; Wahlsten et al., 2003; Wolfer et al., 2004; Van Der Staay, 2006; Richter et al., 2010, 2011). This paper focuses on several animal husbandry and housing issues that are particularly relevant to stress responses in rats, including transportation, handling, cage changing, housing conditions, light levels and the light–dark cycle. We argue that these key animal housing and husbandry variables should be reported in greater detail in an effort to raise awareness about extraneous experimental variables, especially those that have the potential to interact with the stress response.
Resumo:
The need to address on-road motorcycle safety in Australia is important due to the disproportionately high percentage of riders and pillions killed and injured each year. One approach to preventing motorcycle-related injury is through training and education. However, motorcycle rider training lacks empirical support as an effective road safety countermeasure to reduce crash involvement. Previous reviews have highlighted that risk-taking is a contributing factor in many motorcycle crashes, rather than merely a lack of vehicle-control skills (Haworth & Mulvihill, 2005; Jonah, Dawson & Bragg, 1982; Watson et al, 1996). Hence, though the basic vehicle-handling skills and knowledge of road rules that are taught in most traditional motorcycle licence training programs may be seen as an essential condition of safe riding, they do not appear to be sufficient in terms of crash reduction. With this in mind there is considerable scope for the improvement of program focus and content for rider training and education. This program of research examined an existing traditional pre-licence motorcycle rider training program and formatively evaluated the addition of a new classroom-based module to address risky riding; the Three Steps to Safer Riding program. The pilot program was delivered in the real world context of the Q-Ride motorcycle licensing system in the state of Queensland, Australia. Three studies were conducted as part of the program of research: Study 1, a qualitative investigation of delivery practices and student learning needs in an existing rider training course; Study 2, an investigation of the extent to which an existing motorcycle rider training course addressed risky riding attitudes and motives; and Study 3, a formative evaluation of the new program. A literature review as well as the investigation of learning needs for motorcyclists in Study 1 aimed to inform the initial planning and development of the Three Steps to Safer Riding program. Findings from Study 1 suggested that the training delivery protocols used by the industry partner training organisation were consistent with a learner-centred approach and largely met the learning needs of trainee riders. However, it also found that information from the course needs to be reinforced by on-road experiences for some riders once licensed and that personal meaning for training information was not fully gained until some riding experience had been obtained. While this research informed the planning and development of the new program, a project team of academics and industry experts were responsible for the formulation of the final program. Study 2 and Study 3 were conducted for the purpose of formative evaluation and program refinement. Study 2 served primarily as a trial to test research protocols and data collection methods with the industry partner organisation and, importantly, also served to gather comparison data for the pilot program which was implemented with the same rider training organisation. Findings from Study 2 suggested that the existing training program of the partner organisation generally had a positive (albeit small) effect on safety in terms of influencing attitudes to risk taking, the propensity for thrill seeking, and intentions to engage in future risky riding. However, maintenance of these effects over time and the effects on riding behaviour remain unclear due to a low response rate upon follow-up 24 months after licensing. Study 3 was a formative evaluation of the new pilot program to establish program effects and possible areas for improvement. Study 3a examined the short term effects of the intervention pilot on psychosocial factors underpinning risky riding compared to the effects of the standard traditional training program (examined in Study 2). It showed that the course which included the Three Steps to Safer Riding program elicited significantly greater positive attitude change towards road safety than the existing standard licensing course. This effect was found immediately following training, and mean scores for attitudes towards safety were also maintained at the 12 month follow-up. The pilot program also had an immediate effect on other key variables such as risky riding intentions and the propensity for thrill seeking, although not significantly greater than the traditional standard training. A low response rate at the 12 month follow-up unfortunately prevented any firm conclusions being drawn regarding the impact of the pilot program on self-reported risky riding once licensed. Study 3a further showed that the use of intermediate outcomes such as self-reported attitudes and intentions for evaluation purposes provides insights into the mechanisms underpinning risky riding that can be changed by education and training. A multifaceted process evaluation conducted in Study 3b confirmed that the intervention pilot was largely delivered as designed, with course participants also rating most aspects of training delivery highly. The complete program of research contributed to the overall body of knowledge relating to motorcycle rider training, with some potential implications for policy in the area of motorcycle rider licensing. A key finding of the research was that psychosocial influences on risky riding can be shaped by structured education that focuses on awareness raising at a personal level and provides strategies to manage future riding situations. However, the formative evaluation was mainly designed to identify areas of improvement for the Three Steps to Safer Riding program and found several areas of potential refinement to improve future efficacy of the program. This included aspects of program content, program delivery, resource development, and measurement tools. The planned future follow-up of program participants' official crash and traffic offence records over time may lend further support for the application of the program within licensing systems. The findings reported in this thesis offer an initial indication that the Three Steps to Safer Riding is a useful resource to accompany skills-based training programs.
Resumo:
Managing public sector projects in Malaysia is a unique challenge. This is because of the ethical issues involved during the project procurement process. These ethical issues need attention because they will have an impact on the quality, cost and time of the project itself. The ethical issues here include conflict of interest, bid shopping, collusive tendering, bid cutting, corruption and the payment game. In 2006, 17.3% of 417 Malaysian government contract projects were considered sick due to contractors' performances that failed to conduct the project according to the project plan. Some of the sick projects from these statistics are due to the ethical issues involved. These construction projects have low quality due to the selection of the contractors, done unethically due to personal relationships instead of professional qualifications. That is why it is important to govern the project procurement processes to ensure the accountability and transparency of the decision making process to ensure that these ethical issues can be avoided. Extensive research has been conducted on the ethical issues in the tendering process or the award phase of project management. There is a lack of studies looking at the role of clients, including the government client, in relation to unethical practice in project procurement in the public sector. It is important to understand that ethical issues not only involve the contractors and suppliers but also the clients. Even though there are codes of ethics in the public sectors, ethical issues still arise. Therefore, this research develops a project governance framework (PGEDM) for ethical decision making in the Malaysian public sectors. This framework combines the ethical decision making process together with the project governance principals in guiding the public sectors with ethical decision making in project procurement. A triangulation of questionnaire survey and Delphi study was employed in this research to collect required qualitative and quantitative data. A questionnaire survey was conducted among the public officials (the practitioners) who are currently working in the procurement area in the Malaysian public sectors, in identifying the ethical behaviours and factors influencing further ethical behaviour to occur. A Delphi study was also conducted with the assistance of a panel of experts consisting of practitioners that have expertise in the area of project governance and project procurement as well as academician, which further considered the relationship and the influence of the criteria and indicators of ethical decision making (EDM) and project governance (project criteria, organisational culture, contract award criteria, individual criteria, client's requirements, government procedures and professional ethics). Through the identification and integration of the factors and EDM criteria as well as the project governance criteria and EDM steps for ethical issues, a PGEDM framework was developed to promote, and drive consistent decision outcome in project procurement in the public sector. The framework contributes significantly to ethical decision making in the project procurement process. These findings not only give benefit to the people involved in project procurement but also to the public officials in guiding them to be more accountable in handling ethical issues in the future and to have a more transparent decision making process.
The health effects of temperature : current estimates, future projections, and adaptation strategies
Resumo:
Climate change is expected to be one of the biggest global health threats in the 21st century. In response to changes in climate and associated extreme events, public health adaptation has become imperative. This thesis examined several key issues in this emerging research field. The thesis aimed to identify the climate-health (particularly temperature-health) relationships, then develop quantitative models that can be used to project future health impacts of climate change, and therefore help formulate adaptation strategies for dealing with climate-related health risks and reducing vulnerability. The research questions addressed by this thesis were: (1) What are the barriers to public health adaptation to climate change? What are the research priorities in this emerging field? (2) What models and frameworks can be used to project future temperature-related mortality under different climate change scenarios? (3) What is the actual burden of temperature-related mortality? What are the impacts of climate change on future burden of disease? and (4) Can we develop public health adaptation strategies to manage the health effects of temperature in response to climate change? Using a literature review, I discussed how public health organisations should implement and manage the process of planned adaptation. This review showed that public health adaptation can operate at two levels: building adaptive capacity and implementing adaptation actions. However, there are constraints and barriers to adaptation arising from uncertainty, cost, technologic limits, institutional arrangements, deficits of social capital, and individual perception of risks. The opportunities for planning and implementing public health adaptation are reliant on effective strategies to overcome likely barriers. I proposed that high priorities should be given to multidisciplinary research on the assessment of potential health effects of climate change, projections of future health impacts under different climate and socio-economic scenarios, identification of health cobenefits of climate change policies, and evaluation of cost-effective public health adaptation options. Heat-related mortality is the most direct and highly-significant potential climate change impact on human health. I thus conducted a systematic review of research and methods for projecting future heat-related mortality under different climate change scenarios. The review showed that climate change is likely to result in a substantial increase in heatrelated mortality. Projecting heat-related mortality requires understanding of historical temperature-mortality relationships, and consideration of future changes in climate, population and acclimatisation. Further research is needed to provide a stronger theoretical framework for mortality projections, including a better understanding of socioeconomic development, adaptation strategies, land-use patterns, air pollution and mortality displacement. Most previous studies were designed to examine temperature-related excess deaths or mortality risks. However, if most temperature-related deaths occur in the very elderly who had only a short life expectancy, then the burden of temperature on mortality would have less public health importance. To guide policy decisions and resource allocation, it is desirable to know the actual burden of temperature-related mortality. To achieve this, I used years of life lost to provide a new measure of health effects of temperature. I conducted a time-series analysis to estimate years of life lost associated with changes in season and temperature in Brisbane, Australia. I also projected the future temperaturerelated years of life lost attributable to climate change. This study showed that the association between temperature and years of life lost was U-shaped, with increased years of life lost on cold and hot days. The temperature-related years of life lost will worsen greatly if future climate change goes beyond a 2 °C increase and without any adaptation to higher temperatures. The excess mortality during prolonged extreme temperatures is often greater than the predicted using smoothed temperature-mortality association. This is because sustained period of extreme temperatures produce an extra effect beyond that predicted by daily temperatures. To better estimate the burden of extreme temperatures, I estimated their effects on years of life lost due to cardiovascular disease using data from Brisbane, Australia. The results showed that the association between daily mean temperature and years of life lost due to cardiovascular disease was U-shaped, with the lowest years of life lost at 24 °C (the 75th percentile of daily mean temperature in Brisbane), rising progressively as temperatures become hotter or colder. There were significant added effects of heat waves, but no added effects of cold spells. Finally, public health adaptation to hot weather is necessary and pressing. I discussed how to manage the health effects of temperature, especially with the context of climate change. Strategies to minimise the health effects of high temperatures and climate change can fall into two categories: reducing the heat exposure and managing the health effects of high temperatures. However, policy decisions need information on specific adaptations, together with their expected costs and benefits. Therefore, more research is needed to evaluate cost-effective adaptation options. In summary, this thesis adds to the large body of literature on the impacts of temperature and climate change on human health. It improves our understanding of the temperaturehealth relationship, and how this relationship will change as temperatures increase. Although the research is limited to one city, which restricts the generalisability of the findings, the methods and approaches developed in this thesis will be useful to other researchers studying temperature-health relationships and climate change impacts. The results may be helpful for decision-makers who develop public health adaptation strategies to minimise the health effects of extreme temperatures and climate change.
Resumo:
Coordination of dynamic interceptive movements is predicated on cyclical relations between an individual's actions and information sources from the performance environment. To identify dynamic informational constraints, which are interwoven with individual and task constraints, coaches’ experiential knowledge provides a complementary source to support empirical understanding of performance in sport. In this study, 15 expert coaches from 3 sports (track and field, gymnastics and cricket) participated in a semi-structured interview process to identify potential informational constraints which they perceived to regulate action during run-up performance. Expert coaches’ experiential knowledge revealed multiple information sources which may constrain performance adaptations in such locomotor pointing tasks. In addition to the locomotor pointing target, coaches’ knowledge highlighted two other key informational constraints: vertical reference points located near the locomotor pointing target and a check mark located prior to the locomotor pointing target. This study highlights opportunities for broadening the understanding of perception and action coupling processes, and the identified information sources warrant further empirical investigation as potential constraints on athletic performance. Integration of experiential knowledge of expert coaches with theoretically driven empirical knowledge represents a promising avenue to drive future applied science research and pedagogical practice.