933 resultados para Conceptual maps
Resumo:
In recent years, life event approach has been widely used by governments all over the world for designing and providing web services to citizens through their e-government portals. Despite the wide usage of this approach, there is still a challenge of how to use this approach to design e-government portals in order to automatically provide personalised services to citizens. We propose a conceptual framework for e-government service provision based on life event approach and the use of citizen profile to capture the citizen needs, since the process of finding Web services from a government-to-citizen (G2C) system involves understanding the citizens’ needs and demands, selecting the relevant services, and delivering services that matches the requirements. The proposed framework that incorporates the citizen profile is based on three components that complement each other, namely, anticipatory life events, non-anticipatory life events and recurring services.
Resumo:
Department of Health staff wished to use systems modelling to discuss acute patient flows with groups of NHS staff. The aim was to assess the usefulness of system dynamics (SD) in a healthcare context and to elicit proposals concerning ways of improving patient experience. Since time restrictions excluded simulation modelling, a hybrid approach using stock/flow symbols from SD was created. Initial interviews and hospital site visits generated a series of stock/flow maps. A ‘Conceptual Framework’ was then created to introduce the mapping symbols and to generate a series of questions about different patient paths and what might speed or slow patient flows. These materials formed the centre of three workshops for NHS staff. The participants were able to propose ideas for improving patient flows and the elicited data was subsequently employed to create a finalized suite of maps of a general acute hospital. The maps and ideas were communicated back to the Department of Health and subsequently assisted the work of the Modernization Agency.
Resumo:
Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25×25 km grid, which is then reprojected onto a 1×1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25×25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.
Resumo:
The chapter starts from the premise that an historically- and institutionally-formed orientation to music education at primary level in European countries privileges a nineteenth century Western European music aesthetic, with its focus on formal characteristics such as melody and rhythm. While there is a move towards a multi-faceted understanding of musical ability, a discrete intelligence and willingness to accept musical styles or 'open-earedness', there remains a paucity of documented evidence of this in research at primary school level. To date there has been no study undertaken which has the potential to provide policy makers and practitioners with insights into the degree of homogeneity or universality in conceptions of musical ability within this educational sector. Against this background, a study was set up to explore the following research questions: 1. What conceptions of musical ability do primary teachers hold a) of themselves and; b) of their pupils? 2. To what extent are these conceptions informed by Western classical practices? A mixed methods approach was used which included survey questionnaire and semi-structured interview. Questionnaires have been sent to all classroom teachers in a random sample of primary schools in the South East of England. This was followed up with a series of semi-structured interviews with a sub-sample of respondents. The main ideas are concerned with the attitudes, beliefs and working theories held by teachers in contemporary primary school settings. By mapping the extent to which a knowledge base for teaching can be resistant to change in schools, we can problematise primary schools as sites for diversity and migration of cultural ideas. Alongside this, we can use the findings from the study undertaken in an English context as a starting point for further investigation into conceptions of music, musical ability and assessment held by practitioners in a variety of primary school contexts elsewhere in Europe; our emphasis here will be on the development of shared understanding in terms of policies and practices in music education. Within this broader framework, our study can have a significant impact internationally, with potential to inform future policy making, curriculum planning and practice.
Resumo:
The three decades of on-going executives’ concerns of how to achieve successful alignment between business and information technology shows the complexity of such a vital process. Most of the challenges of alignment are related to knowledge and organisational change and several researchers have introduced a number of mechanisms to address some of these challenges. However, these mechanisms pay less attention to multi-level effects, which results in a limited un-derstanding of alignment across levels. Therefore, we reviewed these challenges from a multi-level learning perspective and found that business and IT alignment is related to the balance of exploitation and exploration strategies with the intellec-tual content of individual, group and organisational levels.
Resumo:
Purpose – The aim of this paper is to present a conceptual valuation framework to allow telecare service stakeholders to assess telecare devices in the home in terms of their social, psychological and practical effects. The framework enables telecare service operators to more effectively engage with the social and psychological issues resulting from telecare technology deployment in the home and to design and develop appropriate responses as a result. Design/methodology/approach – The paper provides a contextual background for the need for sociologically pitched tools that engage with the social and cultural feelings of telecare service users before presenting the valuation framework and how it could be used. Findings – A conceptual valuation framework is presented for potential development/use. Research limitations/implications – The valuation framework has yet to be extensively tested or verified. Practical implications – The valuation framework needs to be tested and deployed by a telecare service operator but the core messages of the paper are valid and interesting for readership. Social implications – In addressing the social and cultural perspectives of telecare service stakeholders, the paper makes a link between the technologies in the home, the feelings and orientations of service users (e.g. residents, emergency services, wardens, etc.) and the telecare service operator. Originality/value – The paper is an original contribution to the field as it details how the sociological orientations of telecare technology service users should be valued and addressed by service operators. It has a value through the conceptual arguments made and through valuation framework presented.
Resumo:
Remotely sensed land cover maps are increasingly used as inputs into environmental simulation models whose outputs inform decisions and policy-making. Risks associated with these decisions are dependent on model output uncertainty, which is in turn affected by the uncertainty of land cover inputs. This article presents a method of quantifying the uncertainty that results from potential mis-classification in remotely sensed land cover maps. In addition to quantifying uncertainty in the classification of individual pixels in the map, we also address the important case where land cover maps have been upscaled to a coarser grid to suit the users’ needs and are reported as proportions of land cover type. The approach is Bayesian and incorporates several layers of modelling but is straightforward to implement. First, we incorporate data in the confusion matrix derived from an independent field survey, and discuss the appropriate way to model such data. Second, we account for spatial correlation in the true land cover map, using the remotely sensed map as a prior. Third, spatial correlation in the mis-classification characteristics is induced by modelling their variance. The result is that we are able to simulate posterior means and variances for individual sites and the entire map using a simple Monte Carlo algorithm. The method is applied to the Land Cover Map 2000 for the region of England and Wales, a map used as an input into a current dynamic carbon flux model.
Resumo:
The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.
Resumo:
This paper presents a new method to calculate sky view factors (SVFs) from high resolution urban digital elevation models using a shadow casting algorithm. By utilizing weighted annuli to derive SVF from hemispherical images, the distance light source positions can be predefined and uniformly spread over the whole hemisphere, whereas another method applies a random set of light source positions with a cosine-weighted distribution of sun altitude angles. The 2 methods have similar results based on a large number of SVF images. However, when comparing variations at pixel level between an image generated using the new method presented in this paper with the image from the random method, anisotropic patterns occur. The absolute mean difference between the 2 methods is 0.002 ranging up to 0.040. The maximum difference can be as much as 0.122. Since SVF is a geometrically derived parameter, the anisotropic errors created by the random method must be considered as significant.
Resumo:
Background Patients do not adhere to their medicines for a host of reasons which can include their underlying beliefs as well as the quality of their interactions with healthcare professionals. One way of measuring the outcome of pharmacy adherence services is to assess patient satisfaction but no questionnaire exists that truly captures patients' experiences with these relatively new services. Objective Our objective was to develop a conceptual framework specific to patient satisfaction with a community pharmacy adherence service based on criteria used by patients themselves. Setting The study was based in community pharmacies in one large geographical area of the UK (Surrey). All the work was conducted between October 2008 and September 2010. Methods This study involved qualitative non-participant observation and semi-structured interviewing. We observed the recruitment of patients to the Medicines Use Review (MUR) service and also actual MUR consultations (7). We also interviewed patients (15). Data collection continued until no new themes were identified during analysis. We analysed interviews to firstly create a comprehensive account of themes which had significance within the transcripts, then created sub-themes within super-ordinate categories. We used a structure-process-outcome approach to develop a conceptual framework relating to patient satisfaction with the MUR. Favourable ethical opinion for this study was received from the NHS Surrey Research Ethics Committee on 2nd June 2008. Results Five super-ordinate themes linked to patient satisfaction with the MUR service were identified, including relationships with healthcare providers; attitudes towards healthcare providers; patients' experience of health, healthcare and medicines; patients' views of the MUR service; the logistics of the MUR service. In the conceptual framework, structure was conceptualised as existing relationships, environment, and time; process was conceptualised as related to recruitment and consultation stages; and outcome as two concepts of immediate patient outcomes and satisfaction on reflection. Conclusion We identified and highlighted factors that can influence patient satisfaction with the MUR service and this led to the development of a conceptual framework of patient satisfaction with the MUR service. This can form the basis for developing a questionnaire for measuring patient satisfaction with this and similar pharmacy adherence services. Impact of findings on practice * Pharmacists and researchers can access the relevant ideas presented here in relation to patient satisfaction with pharmacy adherence services. * Researcher can use the conceptual framework as a basis for measuring the quality of pharmacy adherence services. * Community pharmacists can improve the quality of healthcare they provide by realizing concepts relevant to patient satisfaction with adherence services.
Resumo:
Question: What plant properties might define plant functional types (PFTs) for the analysis of global vegetation responses to climate change, and what aspects of the physical environment might be expected to predict the distributions of PFTs? Methods: We review principles to explain the distribution of key plant traits as a function of bioclimatic variables. We focus on those whole-plant and leaf traits that are commonly used to define biomes and PFTs in global maps and models. Results: Raunkiær's plant life forms (underlying most later classifications) describe different adaptive strategies for surviving low temperature or drought, while satisfying requirements for reproduction and growth. Simple conceptual models and published observations are used to quantify the adaptive significance of leaf size for temperature regulation, leaf consistency for maintaining transpiration under drought, and phenology for the optimization of annual carbon balance. A new compilation of experimental data supports the functional definition of tropical, warm-temperate, temperate and boreal phanerophytes based on mechanisms for withstanding low temperature extremes. Chilling requirements are less well quantified, but are a necessary adjunct to cold tolerance. Functional traits generally confer both advantages and restrictions; the existence of trade-offs contributes to the diversity of plants along bioclimatic gradients. Conclusions: Quantitative analysis of plant trait distributions against bioclimatic variables is becoming possible; this opens up new opportunities for PFT classification. A PFT classification based on bioclimatic responses will need to be enhanced by information on traits related to competition, successional dynamics and disturbance.