914 resultados para Compressed air energy storage


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although numerous theoretical efforts have been put forth, a systematic, unified and predictive theoretical framework that is able to capture all the essential physics of the interfacial behaviors of ions, such as the Hofmeister series effect, Jones-Ray effect and the salt effect on the bubble coalescence remain an outstanding challenge. The most common approach to treating electrostatic interactions in the presence of salt ions is the Poisson-Boltzmann (PB) theory. However, there are many systems for which the PB theory fails to offer even a qualitative explanation of the behavior, especially for ions distributed in the vicinity of an interface with dielectric contrast between the two media (like the water-vapor/oil interface). A key factor missing in the PB theory is the self energy of the ion.

In this thesis, we develop a self-consistent theory that treats the electrostatic self energy (including both the short-range Born solvation energy and the long-range image charge interactions), the nonelectrostatic contribution of the self energy, the ion-ion correlation and the screening effect systematically in a single framework. By assuming a finite charge spread of the ion instead of using the point-charge model, the self energy obtained by our theory is free of the divergence problems and gives a continuous self energy across the interface. This continuous feature allows ions on the water side and the vapor/oil side of the interface to be treated in a unified framework. The theory involves a minimum set of parameters of the ion, such as the valency, radius, polarizability of the ions, and the dielectric constants of the medium, that are both intrinsic and readily available. The general theory is first applied to study the thermodynamic property of the bulk electrolyte solution, which shows good agreement with the experiment result for predicting the activity coefficient and osmotic coefficient.

Next, we address the effect of local Born solvation energy on the bulk thermodynamics and interfacial properties of electrolyte solution mixtures. We show that difference in the solvation energy between the cations and anions naturally gives rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The miscibility of the mixture can either increases or decreases depending on the competition between the solvation energy and translation entropy of the ions. The interfacial tension shows a non-monotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations, and decreases approximately as the square root of the salt concentration for dilute solutions, which is in agreement with the Jones-Ray effect observed in experiment.

Next, we investigate the image effects on the double layer structure and interfacial properties near a single charged plate. We show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. The image charge effect is then studied for electrolyte solutions between two plates. For two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like- charge attraction.

Then, we study the inhomogeneous screening effect near the dielectric interface due to the anisotropic and nonuniform ion distribution. We show that the double layer structure and interfacial properties is drastically affected by the inhomogeneous screening if the bulk Debye screening length is comparable or smaller than the Bjerrum length. The width of the depletion layer is characterized by the Bjerrum length, independent of the salt concentration. We predict that the negative adsorption of ions at the interface increases linearly with the salt concentration, which cannot be captured by either the bulk screening approximation or the WKB approximation. For asymmetric salt, the inhomogeneous screening enhances the charge separation in the induced double layer and significantly increases the value of the surface potential.

Finally, to account for the ion specificity, we study the self energy of a single ion across the dielectric interface. The ion is considered to be polarizable: its charge distribution can be self-adjusted to the local dielectric environment to minimize the self energy. Using intrinsic parameters of the ions, such as the valency, radius, and polarizability, we predict the specific ion effect on the interfacial affinity of halogen anions at the water/air interface, and the strong adsorption of hydrophobic ions at the water/oil interface, in agreement with experiments and atomistic simulations.

The theory developed in this work represents the most systematic theoretical technique for weak-coupling electrolytes. We expect the theory to be more useful for studying a wide range of structural and dynamic properties in physicochemical, colloidal, soft-matter and biophysical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

A study of the thermal reaction of water vapor and parts-per-million concentrations of nitrogen dioxide was carried out at ambient temperature and at atmospheric pressure. Nitric oxide and nitric acid vapor were the principal products. The initial rate of disappearance of nitrogen dioxide was first order with respect to water vapor and second order with respect to nitrogen dioxide. An initial third-order rate constant of 5.5 (± 0.29) x 104 liter2 mole-2 sec-1 was found at 25˚C. The rate of reaction decreased with increasing temperature. In the temperature range of 25˚C to 50˚C, an activation energy of -978 (± 20) calories was found.

The reaction did not go to completion. From measurements as the reaction approached equilibrium, the free energy of nitric acid vapor was calculated. This value was -18.58 (± 0.04) kilocalories at 25˚C.

The initial rate of reaction was unaffected by the presence of oxygen and was retarded by the presence of nitric oxide. There were no appreciable effects due to the surface of the reactor. Nitric oxide and nitrogen dioxide were monitored by gas chromatography during the reaction.

Part II

The air oxidation of nitric oxide, and the oxidation of nitric oxide in the presence of water vapor, were studied in a glass reactor at ambient temperatures and at atmospheric pressure. The concentration of nitric oxide was less than 100 parts-per-million. The concentration of nitrogen dioxide was monitored by gas chromatography during the reaction.

For the dry oxidation, the third-order rate constant was 1.46 (± 0.03) x 104 liter2 mole-2 sec-1 at 25˚C. The activation energy, obtained from measurements between 25˚C and 50˚C, was -1.197 (±0.02) kilocalories.

The presence of water vapor during the oxidation caused the formation of nitrous acid vapor when nitric oxide, nitrogen dioxide and water vapor combined. By measuring the difference between the concentrations of nitrogen dioxide during the wet and dry oxidations, the rate of formation of nitrous acid vapor was found. The third-order rate constant for the formation of nitrous acid vapor was equal to 1.5 (± 0.5) x 105 liter2 mole-2 sec-1 at 40˚C. The reaction rate did not change measurably when the temperature was increased to 50˚C. The formation of nitric acid vapor was prevented by keeping the concentration of nitrogen dioxide low.

Surface effects were appreciable for the wet tests. Below 35˚C, the rate of appearance of nitrogen dioxide increased with increasing surface. Above 40˚C, the effect of surface was small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.

Part II

Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.

Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.

Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

利用直流磁控反应溅射技术制备了氧气和氩气的分压比为5:100的NiOx薄膜。利用X射线衍射仪(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和光谱仪研究了热处理对薄膜的微观结构和光学性质的影响, 并对沉积态薄膜的粉末进行了热分析。沉积态的NiOx薄膜在262 ℃时开始分解, 导致NiOx薄膜的透过率增加和反射率降低。X射线衍射和示差扫描量热曲线(DSC)分析表明, 在热处理过程中并无物相的变化, 光学性质的变化是由于NiOx薄膜热分解引起薄膜表面形貌发生变化而引起的。通过Kissinger公式计算出

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Super-resolution filters based on a Gaussian beam are proposed to reduce the focusing spot in optical data storage systems. Both of amplitude filters and pure-phase filters are designed respectively to gain the desired intensity distributions. Their performances are analysed and compared with those based on plane wave in detail. The energy utilizations are presented. The simulation results show that our designed super-resolution filters are favourable for use in optical data storage systems in terms of performance and energy utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel acousto-optic switch operation by a simple laser-diode pumped acousto-optic, Q-switched, ytterbium-doped, double-clad fiber laser is reported. Stable compressed Q-switched sub-40 ns pulses with a beam quality factor (M-2 = 2) are achieved at the repetition rate of 1-50 kHz. Q-switched pulses of similar to 20 mu J pulse energy and 35 as pulse width are obtained at the repetition rate of 50 kHz. Finally, a reasonable explanation of the novel Q-switched operation is presented. (c) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desired performance of unpressurized integral collector storage systems hinges on the appropriate selection of storage volume and the immersed heat exchanger. This paper presents analytical results expressing the relation between storage volume, number of heat exchanger transfer units and temperature limited performance. For a system composed of a single storage element, the limiting behavior of a perfectly stratified storage element is shown to be superior to a fully-mixed storage element, consistent with more general analysis of thermal storage. Since, however, only the fully-mixed limit is readily obtainable in a physical system, the present paper also examines a division of the storage volume into separate compartments. This multi-element storage system shows significantly improved discharge characteristics as a result of improved elemental area utilization and temperature variation between elements, comparable in many cases to a single perfectly-stratified storage element. In addition, the multi-element system shows increased robustness with respect to variations in heat exchanger effectiveness and initial storage temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments were undertaken to prolong the storage life of salted/dried fish by re-drying and/or packing. The storage life under normal conditions is 51 days; re-drying the fish at 50°C for 12 hours extends the storage life only by 7 days. However, re-drying and packing gizzard shad (Gonialosa manminna ) in polyethylene maintains the fish in excellent conditions for well over 87 days. The use of air tight bags for storing good quality salted dried fish is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proximate composition, lipid and fatty acid components of dried mussel and changes in lipids during 1 year storage were studied. Male mussel contained lower fat contents and higher contents of polyunsaturated fatty acids of C20:5n-3, and C22:6n-3. High percentages of Cl6:1, Cl7:1, Cl8:3n-3, C20:3n-8 existed in NL and C!6:0, C18:0, Cl8:1n-9, C20:2n-6, C20:5n- 3, C22:6n-3 were very rich in PL. Triglycerides phosphatidylcholine, cholesterol were major components of mussel lipids. Free fatty acids (FFA) increased greatly and phospholipids decreased during storage, saturated fatty acids showed an increase trend and polyunsaturated fatty adds decreased differently. Dried mussels were vacuum packed and air packed and packaging methods had a great influence on the oxidation of mussellip,ids, indicating preference of vacuum packaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To control combustion instabilities occurring in LPP gas turbine combustors, several active and passive systems have been developed in recent years. The combustion chamber cooling geometry has the potential to influence instability feedback loops by absorbing acoustical energy inside the combustor. The design of the cooling liner and the geometry of the cooling plenum and the cooling air flow rate have a significant influence on the absorption characteristics of the system. This paper presents the results of a cold flow study which was carried out in the course of a comprehensive study on the influence of the cooling geometry on combustor thermoacoustics. Absorption characteristics of three different cooling liner geometries and non-perforated plates were determined over a frequency range from 50 Hz to 600 Hz for different cooling flow rates and different cooling plenum volumes. The experimental results compared well with results from a low order thermoacoustic network model. The acoustic energy absorption spectrum of a cooling liner with 90°-hole configuration was found to be strongly dependent on cooling flow rate and cooling plenum volume, whereas the absorption spectrum of cooling liners with 25°-holes were found to be strongly dependent on the cooling plenum volume, but less dependent on the cooling air flow rate. All cooling liner setups with perforations were capable of increased acoustic absorption over a broad band of frequencies compared to the case of non-perforated combustor walls. © 2010 by Johannes Schmidt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall quality of five SIS products was found in good condition up to 2 months storage on the basis of organoleptic, biochemical and bacteriological characteristics and all the products was excellent in sealed packed condition up to 45 days of storage. However, quality of the products stored in open air atmospheric temperature was found excellent for first 15 days. In an average the initial moisture content was in the range of 13.5 to 15.0% with highest moisture content in puti and lowest in chapila. At the end of the 60 days the moisture content reached to the range of 18.5 to 19.0% which was more or less near the recommended limit of 16% for dried fishery products. The moisture content beyond the recommended limit as the storage period increased further and at the end of 90 days the moisture content increased to the range of 22.9 to 24% when organoleptically the product quality became very poor. The changes in the value of total volatile base nitrogen (TVB-N), peroxide value (PO), moisture and aerobic plate count (APC) of solar tunnel dried products in sealed polythene packages were investigated during 60 days of storage. There was little or no differences in TVB-N, PO and bacterial load of each species packed under various polythene density. The initial TVB-N values were in the range of 10.30 to 12.40 mg/100g of the samples. TVB-N value increased slowly up to the end of the storage period and was to in the range of 46.20 to 57.00 mg/1 00 g of sample. Initially the peroxide values (P.O.) were in the range of 6.54 to 8.40 m.eq./kg oil of the samples. During 60 days of storage, P.O. values increased slowly and at the end of the storage period these values reached to the range of 22.00 to 25.30meq./kg of sample. The initial APC was in the range 5.3xl04-7.3x104 CFU/g. The bacterial load increased slowly and at the end of the 60 days storage period reached to the range 6.6x106 - 8.6x107 CFT/g.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Storage study carried out with prawns processed in rotary drum dryer showed that the deteriorative changes taking place are mostly due to the presence of air and oxygen. By storing under inert atmosphere of nitrogen or carbon dioxide the original characteristics can be maintained over a considerable length of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally, adjustment of gravity equilibrator to a new payload requires energy, e.g. to increase the pre-load of the balancing spring. A novel way of energy-free adjustment of gravity equilibrators is possible by introducing the concept of a storage spring. The storage spring supplies or stores the energy necessary to adjust the balancer spring of the gravity equilibrator. In essence the storage spring mechanism maintains a constant potential energy within the spring mechanism; energy is exchanged between the storage and balancer spring when needed. Various conceptual designs using both zero-free-length springs and regular extension springs are proposed. Two models were manufactured demonstrating the practical embodiments and functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round- trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.