939 resultados para Cliburn, Van, 1934-2013.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Describe the methodology and selection of quality indicators (QI) to be implemented in the EFFECT (EFFectiveness of Endometrial Cancer Treatment) project. EFFECT aims to monitor the variability in Quality of Care (QoC) of uterine cancer in Belgium, to compare the effectiveness of different treatment strategies to improve the QoC and to check the internal validity of the QI to validate the impact of process indicators on outcome. Methods A QI list was retrieved from literature, recent guidelines and QI databases. The Belgian Healthcare Knowledge Center methodology was used for the selection process and involved an expert's panel rating the QI on 4 criteria. The resulting scores and further discussion resulted in a final QI list. An online EFFECT module was developed by the Belgian Cancer Registry including the list of variables required for measuring the QI. Three test phases were performed to evaluate the relevance, feasibility and understanding of the variables and to test the compatibility of the dataset. Results 138 QI were considered for further discussion and 82 QI were eligible for rating. Based on the rating scores and consensus among the expert's panel, 41 QI were considered measurable and relevant. Testing of the data collection enabled optimization of the content and the user-friendliness of the dataset and online module. Conclusions This first Belgian initiative for monitoring the QoC of uterine cancer indicates that the previously used QI selection methodology is reproducible for uterine cancer. The QI list could be applied by other research groups for comparison. © 2013 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade, multi-touch devices (MTD) have spread in a range of contexts. In the learning context, MTD accessibility leads more and more teachers to use them in their classroom, assuming that it will improve the learning activities. Despite a growing interest, only few studies have focused on the impacts of MTD use in terms of performance and suitability in a learning context.However, even if the use of touch-sensitive screens rather than a mouse and keyboard seems to be the easiest and fastest way to realize common learning tasks (as for instance web surfing), we notice that the use of MTD may lead to a less favorable outcome. More precisely, tasks that require users to generate complex and/or less common gestures may increase extrinsic cognitive load and impair performance, especially for intrinsically complex tasks. It is hypothesized that task and gesture complexity will affect users’ cognitive resources and decrease task efficacy and efficiency. Because MTD are supposed to be more appealing, it is assumed that it will also impact cognitive absorption. The present study also takes into account user’s prior knowledge concerning MTD use and gestures by using experience with MTD as a moderator. Sixty university students were asked to perform information search tasks on an online encyclopedia. Tasks were set up so that users had to generate the most commonly used mouse actions (e.g. left/right click, scrolling, zooming, text encoding…). Two conditions were created: MTD use and laptop use (with mouse and keyboard) in order to make a comparison between the two devices. An eye tracking device was used to measure user’s attention and cognitive load. Our study sheds light on some important aspects towards the use of MTD and the added value compared to a laptop in a student learning context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterotoxigenic Escherichia coli expressing F4 fimbriae are the major cause of porcine colibacillosis and are responsible for significant death and morbidity in neonatal and postweaned piglets. Via the chaperone-usher pathway, F4 fimbriae are assembled into thin, flexible polymers mainly composed of the single-domain adhesin FaeG. The F4 fimbrial system has been labeled eccentric because the F4 pilins show some features distinct from the features of pilins of other chaperone-usher-assembled structures. In particular, FaeG is much larger than other pilins (27 versus approximately 17 kDa), grafting an additional carbohydrate binding domain on the common immunoglobulin-like core. Structural data of FaeG during different stages of the F4 fimbrial biogenesis process, combined with differential scanning calorimetry measurements, confirm the general principles of the donor strand complementation/exchange mechanisms taking place during pilus biogenesis via the chaperone-usher pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Gram-negative bacteria use the chaperone-usher pathway to express adhesive surface structures, such as fimbriae, in order to mediate attachment to host cells. Periplasmic chaperones are required to shuttle fimbrial subunits or pilins through the periplasmic space in an assembly-competent form. The chaperones cap the hydrophobic surface of the pilins through a donor-strand complementation mechanism. FaeE is the periplasmic chaperone required for the assembly of the F4 fimbriae of enterotoxigenic Escherichia coli. The FaeE crystal structure shows a dimer formed by interaction between the pilin-binding interfaces of the two monomers. Dimerization and tetramerization have been observed previously in crystal structures of fimbrial chaperones and have been suggested to serve as a self-capping mechanism that protects the pilin-interactive surfaces in solution in the absence of the pilins. However, thermodynamic and biochemical data show that FaeE occurs as a stable monomer in solution. Other lines of evidence indicate that self-capping of the pilin-interactive interfaces is not a mechanism that is conservedly applied by all periplasmic chaperones, but is rather a case-specific solution to cap aggregation-prone surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the number of traditional laptops and computers sold has dipped slightly year over year, manufacturers have developed new hybrid laptops with touch screens to build on the tactile trend. This market is moving quickly to make touch the rule rather than the exception and the sales of these devices have tripled since the launch of Windows 8 in 2012, to reach more than sixty million units sold in 2015. Unlike tablets, that benefit from easy-to-use applications specially designed for tactile interactions, hybrid laptops are intended to be used with regular user-interfaces. Hence, one could ask whether tactile interactions are suited for every task and activity performed with such interfaces. Since hybrid laptops are increasingly used in educational situations, this study focuses on information search tasks which are commonly performed for learning purposes. It is hypothesized that tasks that require complex and/or less common gestures will increase user's cognitive load and impair task performance in terms of efficacy and efficiency. A study was carried out in a usability laboratory with 30 participants for whom prior experience with tactile devices has been controlled. They were asked to perform information search tasks on an online encyclopaedia by using only the touch screen of and hybrid laptop. Tasks were selected with respect to their level of cognitive demand (amount of information that had to be maintained in working memory) and the complexity of gestures needed (left and/or right clicks, zoom, text selection and/or input.), and grouped into 4 sets accordingly. Task performance was measured by the number of tasks succeeded (efficacy) and time spent on each task (efficiency). Perceived cognitive load was assessed thanks to a questionnaire given after each set of tasks. An eye tracking device was used to monitor users' attention allocation and to provide objective cognitive load measures based on pupil dilation and the Index of Cognitive Activity. Each experimental run took approximately one hour. The results of this within-subjects design indicate that tasks involving complex gestures led to a lower efficacy, especially when the tasks were cognitively demanding. Regarding efficacy, there is no significant differences between sets of tasks excepted for tasks with low cognitive demand and complex gestures that required more time to be achieved. Surprisingly, users that declared the biggest experience with tactile devices spent more time than less frequent users. Cognitive load measures indicate that participants reported having devoted more mental effort in the interaction when they had to use complex gestures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PR homology domain-containing member 12 (PRDM12) is a highly evolutionary conserved member of the Prdm family of transcription factors that play essential roles in many cell fate decisions. In human, PRDM12 coding mutations have been recently identified in several patients with hereditary sensory and autonomic neuropathy (HSAN) (submitted elsewhere). Here we show that PRDM12 is involved in sensory neurogenesis in Xenopus and that several of the human Prdm12 mutants show altered structure, subcellular localization and function. In Drosophila, we demonstrate that the sensory neuron specific RNAi knockdown of the Prdm12 ortholog Hamlet induces impaired nociception and that a similar phenotype is observed in hypomorph hamlet mutants. In human fibroblasts of patients with PRDM12 mutations, we identified additional possible downstream target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE). Knock-down of fly TRHDE in sensory neurons resulted in altered nociceptive neurons and impaired nociception. Collectively, these findings provide the first evidence showing that Prdm12 plays an important role in sensory neuron development. They also suggest that it has a critical evolutionarily conserved role in pain perception via modulation of the TRH signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERM is a member of the PEA3 group of the Ets transcription factor family that plays important roles in development and tumorigenesis. The PEA3s share an N-terminal transactivation domain (TADn) whose activity is inhibited by small ubiquitin-like modifier (SUMO). However, the consequences of sumoylation and its underlying molecular mechanism remain unclear. The domain structure of ERM TADn alone or modified by SUMO-1 was analyzed using small-angle X-ray scattering (SAXS). Low resolution shapes determined ab initio from the scattering data indicated an elongated shape and an unstructured conformation of TADn in solution. Covalent attachment of SUMO-1 does not perturb the structure of TADn as indicated by the linear arrangement of the SUMO moiety with respect to TADn. Thus, ERM belongs to the growing family of proteins that contain intrinsically unstructured regions. The flexible nature of TADn may be instrumental for ERM recognition and binding to diverse molecular partners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erm, a member of the PEA3 group within the Ets family of transcription factors, is expressed in murine and human lymphocytes. Here, we show that in the human Molt4 lymphoblastic cell line, the erm gene expression is regulated by the conventional PKC (cPKC) pathway. To better characterize the molecular mechanism by which cPKC regulates Erm transcription in Molt4 cells, we tested proximal promoter deletions of the human gene, and identified a specific cPKC-regulated region between positions -420 and -115 upstream of the first exon.