936 resultados para CALIFORNIA CURRENT SYSTEM
Resumo:
Decapods were sampled with a 1 m**2 MOCNESS (mainly upper 1000 m) in the northern Benguela Current during three cruises in December 2009, September/October 2010 and February 2011. Although pelagic decapods are abundant members of the micronekton community, information about their ecophysiology is very limited. Species-specific regional distribution limits were detected for various decapod species (e.g. Plesionika carinata, Sergestes arcticus, Pasiphaea semispinosa). Significant diel vertical migration patterns were determined for three caridean and three penaeiodean species. Biomass was variable and ranged from 23 to 2770 mg dry mass m**-2 with highest values for P. semispinosa. Fatty acid and stable isotope analyses revealed that the examined decapod species are omnivorous tocarnivorous except for the herbivorous to omnivorous species P. carinata. Calanid copepods such as Calanoides carinatus were identified as an important prey item especially for caridean species. Community consumption rates of pelagic decapods derived from respiration rates ranged from 7 mg C m**-2 d**-1 (231S) to 420 mg C m**-2 d**-1 (191S, 171S). A potential active respiratory carbon flux was calculated for migrating pelagic decapods with 4.4 mg C m**- d**-1 for the upper 200 m and with 2.6 mg C m**-2 d**-1 from the base of the euphotic zone to a depth of 600 m. Overall, pelagic decapods apparently play a more prominent role in the northern Benguela Current ecosystem than previously assumed and may exert a substantial predation impact on calanid copepods (up to 13% d**-1 of standing stock).
Resumo:
The structure of the zooplankton foodweb and their dominant carbon fluxes were studied in the upwelling system off northern Chile (Mejillones Bay; 23°S) between October 2000 and December 2002. High primary production (PP) rates (18 gC/m**2 d) were mostly due to the net-phytoplankton size fraction (>23 µm). High PP has been traditionally associated with the wind-driven upwelling fertilizing effect of equatorial subsurface waters, which favour development of a short food chain dominated by a few small clupeiform fish species. The objective of the present work was to study the trophic carbon flow through the first step of this 'classical chain' (from phytoplankton to primary consumers such as copepods and euphausiids) and the carbon flow towards the gelatinous web composed of both filter-feeding and carnivorous zooplankton. To accomplish this objective, feeding experiments with copepods, appendicularians, ctenophores, and chaetognaths were conducted using naturally occurring plankton prey assemblages. Throughout the study, the total carbon ingestion rates showed that the dominant appendicularian species and small copepods consumed an average of 7 and 5 µgC/ind d, respectively. In addition, copepods ingested particles mainly in the size range of nano- and microplankton, whereas appendicularians ingested in the range of pico- and nanoplankton. Small copepods and appendicularians removed a small fraction of total daily PP (range 6-11%). However, when the pico- + nanoplankton fractions were the major contributors to total PP (oligotrophic conditions), grazing by small copepods increased markedly to 86% of total PP. Under these more oligotrophic conditions, the euphausiids grazing increased as well, but only reached values lower than 5% of total PP. During this study, chaetognaths and ctenophores ingested an average of 1 and 14 copepods/ind d, respectively. In terms of biomass consumed, the potential impact of carnivorous gelatinous zooplankton on the small-size copepod community (preferred prey) was important (2-12% of biomass removed daily). However, their impact produced more significant results on copepod abundance (up to 33%), which suggests that carnivorous gelatinous zooplankton may even modulate (control) the abundance of some species as well as the size structure of the copepod community.
Resumo:
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
Resumo:
Ocean acidification, the assimilation of atmospheric CO2 by the oceans that decreases the pH and CaCO3 saturation state (Omega) of seawater, is projected to have severe adverse consequences for calcifying organisms. While strong evidence suggests calcification by tropical reef-building corals containing algal symbionts (zooxanthellae) will decline over the next century, likely responses of azooxanthellate corals to ocean acidification are less well understood. Because azooxanthellate corals do not obtain photosynthetic energy from symbionts, they provide a system for studying the direct effects of acidification on energy available for calcification. The solitary azooxanthellate orange cup coral Balanophyllia elegans often lives in low-pH, upwelled waters along the California coast. In an 8-month factorial experiment, we measured the effects of three pCO2 treatments (410, 770, and 1220 µatm) and two feeding frequencies (3-day and 21-day intervals) on "planulation" (larval release) by adult B. elegans, and on the survival, skeletal growth, and calcification of newly settled juveniles. Planulation rates were affected by food level but not pCO2. Juvenile mortality was highest under high pCO2 (1220 µatm) and low food (21-day intervals). Feeding rate had a greater impact on calcification of B. elegans than pCO2. While net calcification was positive even at 1220 µatm (~3 times current atmospheric pCO2), overall calcification declined by ~25-45%, and skeletal density declined by ~35-45% as pCO2 increased from 410 to 1220 µatm. Aragonite crystal morphology changed at high pCO2, becoming significantly shorter but not wider at 1220 µatm. We conclude that food abundance is critical for azooxanthellate coral calcification, and that B. elegans may be partially protected from adverse consequences of ocean acidification in habitats with abundant heterotrophic food.
Seawater carbonate chemistry and benthic foraminiferal assemblage counts from the Gulf of California