959 resultados para Botany|Microbiology|Plant Pathology
Resumo:
Mode of access: Internet.
Resumo:
No more published.
Resumo:
Published in Linné's Amoenitates Academicae, ed. 2. v. 6, no. 106. 1789. p. 77-115.
Resumo:
"To subscribers" (note concerning errata in v. 1): l leaf, inserted at end of v. 2.
Resumo:
Includes bibliographical references and indexes.
Resumo:
"Part I : Africa, Australia, North America, South America, and islands of the Atlantic, Pacific, and Indian Oceans" was issued as Miscellaneous publication no. 401.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Physiological botany; I. Outlines of the histology of phaenogamous plants; II. Vegetable physiology.
Resumo:
Mode of access: Internet.
Resumo:
Vol. II: Index.
Resumo:
Each plate accompanied by leaf with descriptive letterpress.
Resumo:
Mode of access: Internet.
Resumo:
Medical microbiology and virology laboratories use nucleic acid tests (NAT) to detect genomic material of infectious organisms in clinical samples. Laboratories choose to perform assembled (or in-house) NAT if commercial assays are not available or if assembled NAT are more economical or accurate. One reason commercial assays are more expensive is because extensive validation is necessary before the kit is marketed, as manufacturers must accept liability for the performance of their assays, assuming their instructions are followed. On the other hand, it is a particular laboratory's responsibility to validate an assembled NAT prior to using it for testing and reporting results on human samples. There are few published guidelines for the validation of assembled NAT. One procedure that laboratories can use to establish a validation process for an assay is detailed in this document. Before validating a method, laboratories must optimise it and then document the protocol. All instruments must be calibrated and maintained throughout the testing process. The validation process involves a series of steps including: (i) testing of dilution series of positive samples to determine the limits of detection of the assay and their linearity over concentrations to be measured in quantitative NAT; (ii) establishing the day-to-day variation of the assay's performance; (iii) evaluating the sensitivity and specificity of the assay as far as practicable, along with the extent of cross-reactivity with other genomic material; and (iv) assuring the quality of assembled assays using quality control procedures that monitor the performance of reagent batches before introducing new lots of reagent for testing.
Resumo:
The plant antimicrobial peptide MiAMP1 from Macadamia integrifolia and the yeast killer toxin peptide WmKT from Williopsis mrakii are structural homologues. Comparative studies of yeast mutants were performed to test their sensitivity to these two antimicrobial peptides. No differences in susceptibility to MiAMP1 were detected between wild-type and several WmKT-resistant mutant yeast strains. A yeast mutant MT1, resistant to MiAMP1 but unaffected in its susceptibility to plant defensins and hydrogen peroxide, also did not show enhanced tolerance towards WmKT. It is therefore probable that the Greek key beta-barrel structure shared by MiAMP1 and WmKT provides a robust structural framework ensuring stability for the two proteins but that the specific action of the peptides depends on other motifs. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.