919 resultados para Beet sugar
Resumo:
The focus of this paper is on two World Heritage Areas: the Great Barrier Reef in Queensland, Australia and the Everglades in Florida. While both are World Heritage listed by the UNESCO, the Everglades is on the "World Heritage in Danger" list and the Great Barrier Reef could be on this list within the next year if present pressures continue. This paper examines the planning approaches and governance structures used in these two areas (Queensland and Florida) to manage the growth and development pressures. To make the analysis manageable, given the scale of these World Heritage areas, case studies at the local government level will be used: the Cairns Regional Council in Queensland and Monroe County in Florida. The case study analysis will involve three steps: (1) examination of the various plans at the federal, state, local levels that impact upon environmental quality in the Great Barrier Reef and Everglades; (2) assessing the degree to which these plans have been implemented; and (3) determine if (and how) the plans have improved environmental quality. In addition to the planning analysis we will also examine the governance structures (Lebel et al. 2006) within which planning operates. In any comparative analysis context is important (Hantrais 2009). Contextual differences between Queensland and Florida have previously been examined by Sipe, et al. (2007) and will be used as the starting point for this analysis. Our operating hypothesis and preliminary analysis suggests that the planning approaches and governance structures used in Florida and Queensland are considerably different, but the environmental outcomes may be similar. This is based, in part, on Vella (2004) who did a comparative analysis of environmental practices in the sugar industry in Florida and Queensland. This research re-examines this hypothesis and broadens the focus beyond the sugar industry to growth and development more broadly.
Resumo:
This research utilised software developed for managing the Australian sugar industry's cane rail transport operations and GPS data used to track locomotives to ensure safe operation of the railway system to improve transport operations. As a result, time usage in the sugarcane railway can now be summarised and locomotive arrival time to sidings and mills can be predicted. This information will help the development of more efficient run schedules and enable mill staff and harvesters to better plan their shifts ahead, enabling cost reductions through better use of available time.
Resumo:
Extracellular polysaccharides are major immunogenic components of the bacterial cell envelope. However, little is known about their biosynthesis in the genus Acinetobacter, which includes A. baumannii, an important nosocomial pathogen. Whether Acinetobacter sp. produce a capsule or a lipopolysaccharide carrying an O antigen or both is not resolved. To explore these issues, genes involved in the synthesis of complex polysaccharides were located in 10 complete A. baumannii genome sequences, and the function of each of their products was predicted via comparison to enzymes with a known function. The absence of a gene encoding a WaaL ligase, required to link the carbohydrate polymer to the lipid A-core oligosaccharide (lipooligosaccharide) forming lipopolysaccharide, suggests that only a capsule is produced. Nine distinct arrangements of a large capsule biosynthesis locus, designated KL1 to KL9, were found in the genomes. Three forms of a second, smaller variable locus, likely to be required for synthesis of the outer core of the lipid A-core moiety, were designated OCL1 to OCL3 and also annotated. Each K locus includes genes for capsule export as well as genes for synthesis of activated sugar precursors, and for glycosyltransfer, glycan modification and oligosaccharide repeat-unit processing. The K loci all include the export genes at one end and genes for synthesis of common sugar precursors at the other, with a highly variable region that includes the remaining genes in between. Five different capsule loci, KL2, KL6, KL7, KL8 and KL9 were detected in multiply antibiotic resistant isolates belonging to global clone 2, and two other loci, KL1 and KL4, in global clone 1. This indicates that this region is being substituted repeatedly in multiply antibiotic resistant isolates from these clones.
Resumo:
The repeat unit structure of the K2 capsule from an extensively antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain was determined. The oligosaccharide contains three simple sugars, d-glucopyranose, d-galatopyranose and N-acetyl-d-galactosamine, and the complex sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (Pse5Ac7Ac or pseudaminic acid), which has not previously been reported in any A. baumannii capsule. The strain was found to carry all the genes required for the synthesis of the sugars and construction of the K2 structure. The linkages catalyzed by the initiating transferase, three glycosyltransferases and the Wzy polymerase were also predicted. Examination of publicly available A. baumannii genome sequences revealed that the same gene cluster, KL2, often occurs in extensively antibiotic-resistant GC2 isolates and in further strain types. The gene module responsible for the synthesis of pseudaminic acid was also detected in four other K loci. A related module including genes for an acylated relative of pseudaminic acid was also found in two new KL types. A polymerase chain reaction scheme was developed to detect all modules containing genes for sugars based on pseudaminic acid and to specifically detect KL2.
Resumo:
An Acinetobacter baumannii global clone 1 (GC1) isolate was found to carry a novel capsule biosynthesis gene cluster, designated KL12. KL12 contains genes predicted to be involved in the synthesis of simple sugars, as well as ones for N-acetyl-l-fucosamine (l-FucpNAc) and N-acetyl-d-fucosamine (d-FucpNAc). It also contains a module of 10 genes, 6 of which are required for 5,7-di-N-acetyl-legionaminic acid synthesis. Analysis of the composition of the capsule revealed the presence of N-acetyl-d-galactosamine, l-FucpNAc and d-FucpNAc, confirming the role of fnlABC and fnr/gdr genes in the synthesis of l-FucpNAc and d-FucpNAc, respectively. A non-2-ulosonic acid, shown to be 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-altro-non-2-ulosonic acid, was also detected. This sugar has not previously been recovered from biological source, and was designated 5,7-di-N-acetyl-acinetaminic acid (Aci5Ac7Ac). Proteins encoded by novel genes, named aciABCD, were predicted to be involved in the conversion of 5,7-di-N-acetyl-legionaminic acid to Aci5Ac7Ac. A pathway for 5,7-di-N-acetyl-8-epilegionaminic acid biosynthesis was also proposed. In available A. baumannii genomes, genes for the synthesis of 5,7-di-N-acetyl-acinetaminic acid were only detected in two closely related capsule gene clusters, KL12 and KL13, which differ only in the wzy gene. KL12 and KL13 are carried by isolates belonging to clinically important clonal groups, GC1, GC2 and ST25. Genes for the synthesis of N-acyl derivatives of legionaminic acid were also found in 10 further A. baumannii capsule gene clusters, and three carried additional genes for production of 5,7-di-N-acetyl-8-epilegionaminic acid.
Resumo:
Pilot and industrial scale dilute acid pretreatment data can be difficult to obtain due to the significant infrastructure investment required. Consequently, models of dilute acid pretreatment by necessity use laboratory scale data to determine kinetic parameters and make predictions about optimal pretreatment conditions at larger scales. In order for these recommendations to be meaningful, the ability of laboratory scale models to predict pilot and industrial scale yields must be investigated. A mathematical model of the dilute acid pretreatment of sugarcane bagasse has previously been developed by the authors. This model was able to successfully reproduce the experimental yields of xylose and short chain xylooligomers obtained at the laboratory scale. In this paper, the ability of the model to reproduce pilot scale yield and composition data is examined. It was found that in general the model over predicted the pilot scale reactor yields by a significant margin. Models that appear very promising at the laboratory scale may have limitations when predicting yields on a pilot or industrial scale. It is difficult to comment whether there are any consistent trends in optimal operating conditions between reactor scale and laboratory scale hydrolysis due to the limited reactor datasets available. Further investigation is needed to determine whether the model has some efficacy when the kinetic parameters are re-evaluated by parameter fitting to reactor scale data, however, this requires the compilation of larger datasets. Alternatively, laboratory scale mathematical models may have enhanced utility for predicting larger scale reactor performance if bulk mass transport and fluid flow considerations are incorporated into the fibre scale equations. This work reinforces the need for appropriate attention to be paid to pilot scale experimental development when moving from laboratory to pilot and industrial scales for new technologies.
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.
Resumo:
This paper discusses the main milling train management tasks necessary for maintaining good extraction performance through a season. The main activities discussed are making week by week decisions about shredder and mill setting adjustments, and selecting preseason mill settings. To maintain satisfactory milling train extraction performance, the main factors affecting extraction should be examined: cane preparation with pol in open cells or shredder torque, delivery nip compaction through the load or torque controller outputs such as roll lift, feed chute flap position or pressure feeder to mill speed ratio, and added water rate. To select mill settings for the coming season, delivery nip compaction and feed chute exit compaction can be inferred from the previous seasons.
Resumo:
This paper describes recent updates to a milling train extraction model used to assess and predict the performance of a milling train. An extension was made to the milling unit model for the bagasse mills to replace the imbibition coefficient with crushing factor and mixing efficiency. New empirical relationships for reabsorption factor, imbibition coefficient, crushing factor, mixing efficiency and purity ratio were developed. The new empirical relationships were tested against factory measurements and previous model predictions. The updated model has been implemented in the SysCAD process modelling software. New additions to the model implementation include: a shredder model to assess or predict cane preparation, mill and shredder drives for power consumption and an updated imbibition control system to add allow water to be added to intermediate mills.
Resumo:
Background/Aims To examine the nutritional profile of baby and toddler foods sold in Australia. Methods Nutrient information for baby and toddler foods available at Australian supermarkets was collected between August and December 2013. Levels of declared energy, total fat, saturated fat, total sugar, sodium and estimated added sugar were examined, as well as the presence of additional micronutrients on the label. The Health Star Rating (HSR) system was used to determine nutritional quality. The range of products on offer was also examined by product type and by the age category for which the product was marketed. Results Of the 309 products included, 29 % were fortified. On a per 100 g basis, these 309 products provided a mean (±SD) of 476 ± 486 kJ, 1.6 ± 2.4 g total fat, 10.7 ± 12.2 g total sugar, 2.7 ± 7.4 g added sugar, and 33.5 ± 66.5 mg sodium. Fruit-based products or products with fruit listed as an ingredient (58 %) were the predominant product type. On the nutrition label, 42 % displayed at least one additional micronutrient while 37 % did not display saturated fat. The most common HSR was four stars (45 %) and 6? months was the most commonly identified targeted age group (36 %). Conclusions The majority of baby and toddler foods sold in Australian supermarkets are ready-made fruit-based products aimed at children under 12 months of age. Baby and toddler foods are overlooked in public policy discussions pertaining to population nutrient intake but their relatively high sugar content deriving from fruits requires close attention to ensure these foods do not replace other more nutrient dense foods, given children have an innate preference for sweet tastes.
Resumo:
Diets low in fruits, vegetables, and whole grains, and high in saturated fat, salt, and sugar are the major contributors to the burden of chronic diseases globally. Previous research, and studies in this issue of Public Health Nutrition (PHN), show that unhealthy diets are more commonly observed among socioeconomically disadvantaged groups, and are key contributors to their higher rates of chronic disease. Most research examining socioeconomic inequalities in diet and bodyweight has been descriptive, and has focused on identifying the nature, extent, and direction of the inequalities. These types of studies are clearly necessary and important. We need however to move beyond description of the problem and focus much more on the question of why inequalities in diet and bodyweight exist. Furthering our understanding of this question will provide the necessary evidence-base to develop effective interventions to reduce the inequalities. The challenge of tackling dietary inequalities however doesn’t finish here: a maximally effective approach will also require equity-based policies that address the unequal population-distribution of social and economic resources, which is the fundamental root-cause of dietary and bodyweight inequalities.
Resumo:
This project aim was to replace petroleum-based plastic packaging materials that pollute the environment, with biodegradable starch-based polymer composites. It was demonstrated that untreated sugar cane bagasse microfibres and unbleached nanofibres significantly improved the physical, mechanical and chemical properties of starch films, while thermal extrusion of starch with alcohol improved the stiffness and the addition of aconitic acid cross-linked the film making it moisture resistant and extensible.
Resumo:
Wilmar’s Pioneer Sugar mill has a need to replace some small rotary vacuum filters (RVFs) due to the condition of existing aged plant. A vacuum belt press filter (VBPF) manufactured by Technopulp of Brazil was purchased and installed at Pioneer Mill in September/October 2012 and commissioning trials undertaken over a five week period commencing in early November. There are no vacuum belt press filters currently in use in Australian sugar mills for mud processing. The Technopulp filter is a relatively common and well accepted technology with over 600 units installed. The main attractions for the VBPF to Pioneer Mill were…
Resumo:
Purpose To determine neuroretinal function with multifocal electroretinogram (mfERG) in diabetic subjects without retinopathy. Methods Multifocal electroretinogram (mfERG) was performed in 18 eyes of 18 diabetic subjects without retinopathy and 17 eyes of 17 age and gender-matched healthy control participants. Among 18 diabetic subjects, two had type 1 and 16 had type 2 diabetes. MfERG responses were averaged by the retinal areas of six concentric rings and four quadrants, and 103 retinal locations; N1–P1 amplitude and P1-implicit time were analysed. Results Average mfERG N1–P1 amplitude (in nv/deg2) of 103 retinal locations was 56.3 ± 17.2 (mean ± SD) in type 1 diabetic subjects, 47.2 ± 9.3 in type 2 diabetic subjects and 71.5 ± 12.7 in controls. Average P1-implicit time (in ms) was 43.0 ± 1.3 in type 1 diabetic subjects, 43.9 ± 2.3 in type 2 diabetic subjects and 41.9 ± 2.1 in controls. There was significant reduction in average N1–P1 amplitude and delay in P1-implicit time in type 2 diabetic subjects in comparison to controls. mfERG amplitude did not show any significant correlation with diabetes duration and blood sugar level. However, implicit time showed a positive correlation with diabetes duration in type 2 diabetic subjects with diabetes duration ≥5 years. Conclusions This is the first study in a Nepalese population with diabetes using multifocal electroretinography. We present novel findings that mfERG N1–P1 amplitude is markedly reduced along with delay in P1-implicit time in type 2 diabetic subjects without retinopathy. These findings indicate that there might be significant dysfunction of inner retina before the development of diabetic retinopathy in the study population, which have higher prevalence of diabetes than the global estimate and uncontrolled blood sugar level.