928 resultados para Bayesian nonparametric


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several versions of the lognormal distribution in the statistical literature, one is based in the exponential transformation of generalized normal distribution (GN). This paper presents the Bayesian analysis for the generalized lognormal distribution (logGN) considering independent non-informative Jeffreys distributions for the parameters as well as the procedure for implementing the Gibbs sampler to obtain the posterior distributions of parameters. The results are used to analyze failure time models with right-censored and uncensored data. The proposed method is illustrated using actual failure time data of computers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crucial aspect of evidential reasoning in crime investigation involves comparing the support that evidence provides for alternative hypotheses. Recent work in forensic statistics has shown how Bayesian Networks (BNs) can be employed for this purpose. However, the specification of BNs requires conditional probability tables describing the uncertain processes under evaluation. When these processes are poorly understood, it is necessary to rely on subjective probabilities provided by experts. Accurate probabilities of this type are normally hard to acquire from experts. Recent work in qualitative reasoning has developed methods to perform probabilistic reasoning using coarser representations. However, the latter types of approaches are too imprecise to compare the likelihood of alternative hypotheses. This paper examines this shortcoming of the qualitative approaches when applied to the aforementioned problem, and identifies and integrates techniques to refine them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the testing of autoregressive conditional duration (ACD) models by gauging the distance between the parametric density and hazard rate functions implied by the duration process and their non-parametric estimates. We derive the asymptotic justification using the functional delta method for fixed and gamma kernels, and then investigate the finite-sample properties through Monte Carlo simulations. Although our tests display some size distortion, bootstrapping suffices to correct the size without compromising their excellent power. We show the practical usefulness of such testing procedures for the estimation of intraday volatility patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We transform a non co-operati ve game into a -Bayesian decision problem for each player where the uncertainty faced by a player is the strategy choices of the other players, the pr iors of other players on the choice of other players, the priors over priors and so on.We provide a complete characterization between the extent of knowledge about the rationality of players and their ability to successfulIy eliminate strategies which are not best responses. This paper therefore provides the informational foundations of iteratively unàominated strategies and rationalizable strategic behavior (Bernheim (1984) and Pearce (1984». Moreover, sufficient condi tions are also found for Nash equilibrium behavior. We also provide Aumann's (1985) results on correlated equilibria .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops nonparametric tests of independence between two stationary stochastic processes. The testing strategy boils down to gauging the closeness between the joint and the product of the marginal stationary densities. For that purpose, I take advantage of a generalized entropic measure so as to build a class of nonparametric tests of independence. Asymptotic normality and local power are derived using the functional delta method for kernels, whereas finite sample properties are investigated through Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Economias emergentes sofrem importantes restrições de crédito quando comparadas com economias desenvolvidas, entretanto, modelos estocásticos de equilíbrio geral (DSGE) desenhados para economias emergentes ainda precisam avançar nessa discussão. Nós propomos um modelo DSGE que pretende representar uma economia emergente com setor bancário baseado em Gerali et al. (2010). Nossa contribuição é considerar uma parcela da renda esperada como colateral para empréstimos das famílias. Nós estimamos o modelo proposto para o Brasil utilizando estimação Bayesiana e encontramos que economias que sofrem restrição de colateral por parte das famílias tendem a sentir o impacto de choques monetários mais rapidamente devido a exposição do setor bancário a mudanças no salário esperado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a systematic and unified treatment of the developments in the area of kernel estimation in econometrics and statistics. Both the estimation and hypothesis testing issues are discussed for the nonparametric and semiparametric regression models. A discussion on the choice of windowwidth is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.