969 resultados para Bayesian learning
Resumo:
The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes.
Resumo:
This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.
Resumo:
Audit report on the Muscatine Agricultural Learning Center for the year ended December 31, 2012
Resumo:
Learning is the ability of an organism to adapt to the changes of its environment in response to its past experience. It is a widespread ability in the animal kingdom, but its evolutionary aspects are poorly known. Learning ability is supposedly advantageous under some conditions, when environmental conditions are not too stable - because in this case there is no need to learn to predict any event in the environment - and not changing too fast - otherwise environmental cues cannot be used because they are not reliable. Nevertheless, learning ability is also known to be costly in terms of energy needed for neuronal synthesis, memory formation, initial mistakes. During my PhD, I focused on the study of genetic variability of learning ability in natural populations. Genetic variability is the basis on which natural selection and genetic drift can act. How does learning ability vary in nature? What are the roles of additive genetic variation or maternal effects in this variation? Is it involved in evolutionary trade-offs with other fitness-related traits?¦I investigated a natural population of fruit fly, Drosophila melanogaster, as a model organism. Its learning ability is easy to measure with associative memory tests. I used two research tools: multiple inbred and isofemale lines derived from a natural population as a representative sample. My work was divided into three parts.¦First, I investigated the effects of inbreeding on aversive learning (avoidance of an odor previously associated with mechanical shock). While the inbred lines consistently showed reduced egg-to-adult viability by 28 %, the effects of inbreeding on learning performance was 18 % and varied among assays, with a trend to be most pronounced for intermediate conditioning intensity. Variation among inbred lines indicates that ample genetic variance for learning was segregating in the base population, and suggests that the inbreeding depression observed in learning performance was mostly due to dominance rather than overdominance. Across the inbred lines, learning performance was positively correlated with the egg-to-adult viability. This positive genetic correlation contradicts previous studies which observed a trade-off between learning ability and lifespan or larval competitive ability. It suggests that much of the genetic variation for learning is due to pleiotropic effects of genes affecting other functions related to survival. Together with the overall mild effects of inbreeding on learning performance, this suggests that genetic variation specifically affecting learning is either very low, or is due to alleles with mostly additive (semi-dominant) effects. It also suggests that alleles reducing learning performance are on average partially recessive, because their effect does not appear in the outbred base population. Moreover, overdominance seems unlikely as major cause of the inbreeding depression, because even if the overall mean of the inbred line is smaller than the outbred base population, some of the inbred lines show the same learning score as the outbred base population. If overdominance played an important part in inbreeding depression, then all the homozygous lines should show lower learning ability than¦outbred base population.¦In the second part of my project, I sampled the same natural population again and derived isofemale lines (F=0.25) which are less adapted to laboratory conditions and therefore are more representative of the variance of the natural population. They also showed some genetic variability for learning, and for three other fitness-related traits possibly related with learning: resistance to bacterial infection, egg-to-adult viability and developmental time. Nevertheless, the genetic variance of learning ability did not appear to be smaller than the variance of the other traits. The positive correlation previously observed between learning ability and egg- to-adult viability did not appear in isofemale lines (nor a negative correlation). It suggests that there was still genetic variability within isofemale lines and that they did not fix the highly deleterious pleiotropic alleles possibly responsible for the previous correlation.¦In order to investigate the relative amount of nuclear (additive and non-additive effects) and extra-nuclear (maternal and paternal effect) components of variance in learning ability and other fitness-related traits among the inbred lines tested in part one, I performed a diallel cross between them. The nuclear additive genetic variance was higher than other components for learning ability and survival to learning ability, but in contrast, maternal effects were more variable than other effects for developmental traits. This suggests that maternal effects, which reflects effects from mitochondrial DNA, epigenetic effects, or the amount of nutrients that are invested by the mother in the egg, are more important in the early stage of life, and less at the adult stage. There was no additive genetic correlation between learning ability and other traits, indicating that the correlation between learning ability and egg-to-adult viability observed in the first pat of my project was mostly due to recessive genes.¦Finally, my results showed that learning ability is genetically variable. The diallel experiment showed additive genetic variance was the most important component of the total variance. Moreover, every inbred or isofemale line showed some learning ability. This suggested that alleles impairing learning ability are eliminated by selection, and therefore that learning ability is under strong selection in natural populations of Drosophila. My results cannot alone explain the maintenance of the observed genetic variation. Even if I cannot eliminate the hypothesis of pleiotropy between learning ability and the other fitness-related traits I measured, there is no evidence for any trade-off between these traits and learning ability. This contradicts what has been observed between learning ability and other traits like lifespan and larval competitivity.¦L'apprentissage représente la capacité d'un organisme à s'adapter aux changement de son environnement au cours de sa vie, en réponse à son expérience passée. C'est une capacité très répandue dans le règne animal, y compris pour les animaux les plus petits et les plus simples, mais les aspects évolutifs de l'apprentissage sont encore mal connus. L'apprentissage est supposé avantageux dans certaines conditions, quand l'environnement n'est ni trop stable - dans ce cas, il n'y a rien à apprendre - ni trop variable - dans ce cas, les indices sur lesquels se reposer changent trop vite pour apprendre. D'un autre côté, l'apprentissage a aussi des coûts, en terme de synthèse neuronale, pour la formation de la mémoire, ou de coûts d'erreur initiale d'apprentissage. Pendant ma thèse, j'ai étudié la variabilité génétique naturelle des capacités d'apprentissage. Comment varient les capacités d'apprentissage dans la nature ? Quelle est la part de variation additive, l'impact des effets maternel ? Est-ce que l'apprentissage est impliqué dans des interactions, de type compromis évolutifs, avec d'autres traits liés à la fitness ?¦Afin de répondre à ces questions, je me suis intéressée à la mouche du vinaigre, ou drosophile, un organisme modèle. Ses capacités d'apprentissage sont facile à étudier avec un test de mémoire reposant sur l'association entre un choc mécanique et une odeur. Pour étudier ses capacités naturelles, j'ai dérivé de types de lignées d'une population naturelle: des lignées consanguines et des lignées isofemelles.¦Dans une première partie, je me suis intéressée aux effets de la consanguinité sur les capacités d'apprentissage, qui sont peu connues. Alors que les lignées consanguines ont montré une réduction de 28% de leur viabilité (proportion d'adultes émergeants d'un nombre d'oeufs donnés), leurs capacités d'apprentissage n'ont été réduites que de 18%, la plus forte diminution étant obtenue pour un conditionnement modéré. En outre, j'ai également observé que les capacités d'apprentissage était positivement corrélée à la viabilité entre les lignées. Cette corrélation est surprenante car elle est en contradiction avec les résultats obtenus par d'autres études, qui montrent l'existence de compromis évolutifs entre les capacités d'apprentissage et d'autres traits comme le vieillissement ou la compétitivité larvaire. Elle suggère que la variation génétique des capacités d'apprentissage est due aux effets pleiotropes de gènes récessifs affectant d'autres fonctions liées à la survie. Ces résultats indiquent que la variation pour les capacités d'apprentissage est réduite comparée à celle d'autres traits ou est due à des allèles principalement récessifs. L'hypothèse de superdominance semble peu vraisemblable, car certaines des lignées consanguines ont obtenu des scores d'apprentissage égaux à ceux de la population non consanguine, alors qu'en cas de superdominance, elles auraient toutes dû obtenir des scores inférieurs.¦Dans la deuxième partie de mon projet, j'ai mesuré les capacités d'apprentissage de lignées isofemelles issues de la même population initiale que les lignées consanguines. Ces lignées sont issues chacune d'un seul couple, ce qui leur donne un taux d'hétérozygosité supérieur et évite l'élimination de lignées par fixation d'allèles délétères rares. Elles sont ainsi plus représentatives de la variabilité naturelle. Leur variabilité génétique est significative pour les capacités d'apprentissage, et trois traits liés à la fois à la fitness et à l'apprentissage: la viabilité, la résistance à l'infection bactérienne et la vitesse de développement. Cependant, la variabilité des capacités d'apprentissage n'apparaît cette fois pas inférieure à celle des autres traits et aucune corrélation n'est constatée entre les capacité d'apprentissage et les autres traits. Ceci suggère que la corrélation observée auparavant était surtout due à la fixation d'allèles récessifs délétères également responsables de la dépression de consanguinité.¦Durant la troisième partie de mon projet, je me suis penchée sur la décomposition de la variance observée entre les lignées consanguines observée en partie 1. Quatre composants ont été examinés: la variance due à des effets nucléaires (additifs et non additifs), et due à des effets parentaux (maternels et paternels). J'ai réalisé un croisement diallèle de toutes les lignées. La variance additive nucléaire s'est révélée supérieure aux autres composants pour les capacités d'apprentissage et la résistance à l'infection bactérienne. Par contre, les effets maternels étaient plus importants que les autres composants pour les traits développementaux (viabilité et vitesse de développement). Ceci suggère que les effets maternels, dus à G ADN mitochondrial, à l'épistasie ou à la quantité de nutriments investis dans l'oeuf par la mère, sont plus importants dans les premiers stades de développement et que leur effet s'estompe à l'âge adulte. Il n'y a en revanche pas de corrélation statistiquement significative entre les effets additifs des capacités d'apprentissage et des autres traits, ce qui indique encore une fois que la corrélation observée entre les capacités d'apprentissage et la viabilité dans la première partie du projet était due à des effets d'allèles partiellement récessifs.¦Au, final, mes résultats montrent bien l'existence d'une variabilité génétique pour les capacités d'apprentissage, et l'expérience du diallèle montre que la variance additive de cette capacité est importante, ce qui permet une réponse à la sélection naturelle. Toutes les lignées, consanguines ou isofemelles, ont obtenu des scores d'apprentissage supérieurs à zéro. Ceci suggère que les allèles supprimant les capacités d'apprentissage sont fortement contre-sélectionnés dans la nature Néanmoins, mes résultats ne peuvent pas expliquer le maintien de cette variabilité génétique par eux-même. Même si l'hypothèse de pléiotropie entre les capacités d'apprentissage et l'un des traits liés à la fitness que j'ai mesuré ne peut être éliminée, il n'y a aucune preuve d'un compromis évolutif pouvant contribuer au maintien de la variabilité.
Resumo:
Scientific reporting and communication is a challenging topic for which traditional study programs do not offer structured learning activities on a regular basis. This paper reports on the development and implementation of a web application and associated learning activities that intend to raise the awareness of reporting and communication issues among students in forensic science and law. The project covers interdisciplinary case studies based on a library of written reports about forensic examinations. Special features of the web framework, in particular a report annotation tool, support the design of various individual and group learning activities that focus on the development of knowledge and competence in dealing with reporting and communication challenges in the students' future areas of professional activity.
Resumo:
This research analyses the actual use and conception of the ICT mobility that a life long learning group of students have. The students have participated in a Mobile Learning experience along an online postgraduate course, which was designed under a traditional e-learning perspective. The students received a tablet PC (iPad) in order to work at the course and also to use it in their personal and professional life. A complete and original pre-test / post-test questionnaire was applied before and after the course. This instrument was scientifically validated. Thru the questionnaire, uses tendency and students perceptions were studied. Frequencies, purposes, habits of use and valuation, as well as the device"s integration into their personal, social and professional life were studied. The analysis intents to apply the 'Social Technographics Profile" by Bernoff (2010) to classify, by profile groups, the users of the actual Internet. Finally a reflexion of the reasons and limits of the theory, in this study, and also the relation to reality is presented. The Inter-coding reliability and validity shows the possibility of applying the instrument on wider samples in order to get a closer look to the uses and actual conceptions of the ubiquitous ICTs.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.
Resumo:
We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.
Resumo:
This article extends existing discussion in literature on probabilistic inference and decision making with respect to continuous hypotheses that are prevalent in forensic toxicology. As a main aim, this research investigates the properties of a widely followed approach for quantifying the level of toxic substances in blood samples, and to compare this procedure with a Bayesian probabilistic approach. As an example, attention is confined to the presence of toxic substances, such as THC, in blood from car drivers. In this context, the interpretation of results from laboratory analyses needs to take into account legal requirements for establishing the 'presence' of target substances in blood. In a first part, the performance of the proposed Bayesian model for the estimation of an unknown parameter (here, the amount of a toxic substance) is illustrated and compared with the currently used method. The model is then used in a second part to approach-in a rational way-the decision component of the problem, that is judicial questions of the kind 'Is the quantity of THC measured in the blood over the legal threshold of 1.5 μg/l?'. This is pointed out through a practical example.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
Avalanche forecasting is a complex process involving the assimilation of multiple data sources to make predictions over varying spatial and temporal resolutions. Numerically assisted forecasting often uses nearest neighbour methods (NN), which are known to have limitations when dealing with high dimensional data. We apply Support Vector Machines to a dataset from Lochaber, Scotland to assess their applicability in avalanche forecasting. Support Vector Machines (SVMs) belong to a family of theoretically based techniques from machine learning and are designed to deal with high dimensional data. Initial experiments showed that SVMs gave results which were comparable with NN for categorical and probabilistic forecasts. Experiments utilising the ability of SVMs to deal with high dimensionality in producing a spatial forecast show promise, but require further work.