1000 resultados para Barreirinha Formation
Resumo:
We have studied the sequential tunneling of doped weakly coupled GaAs/ALAs superlattices (SLs), whose ground state of the X valley in AlAS layers is designed to be located between the ground state (E(GAMMA1)) and the first excited state (E(GAMMA2)) of the GAMMA valley in GaAs wells. The experimental results demonstrate that the high electric field domain in these SLs is attributed to the GAMMA-X sequential tunneling instead of the usual sequential resonant tunneling between subbands in adjacent wells. Within this kind of high field domain, electrons from the ground state in the GaAs well tunnel to the ground state of the X valley in the nearest AlAs layer, then through very rapid real-space transfer relax from the X valley in the AlAs layer to the ground state of the GAMMA valley of the next GaAs well.
Resumo:
The influence of heterostructure quality on transport and optical properties of GaAs/AlGaAs single quantum wells with different qualities was studied. In a conventional sample-A, the transport scattering time and the quantum scattering time are small and close to each other. The interface roughness scattering is a dominant scattering mechanism. From comparison between theory and experiment, interface roughness with fluctuation height 2.5 Angstrom and the lateral size of 50-70 Angstrom were estimated. For samples introducing superlattices instead of AlGaAs layers or by utilizing growth interruption, both the transport and PL measurements showed that interfaces were rather smooth in the samples. The two scattering times are much longer. The interface roughness scattering is relegated to an unimportant position. Results demonstrated that it is important to control the formation of heterostructures in order to improve the interface quality.
Resumo:
Interfacial formation processes and reactions between Au and hydrogenated amorphous Si have been studied by photoemission spectroscopy and Auger electron spectroscopy. A three-dimensional growth of Au metal cluster occurs at initial formation of the Au/a-Si:H interface. When Au deposition exceeds a critical time, Au and Si begin interdiffusing and react to create an Au-Si alloy region. Annealing enhances interdiffusion and a Si-rich region exists on the topmost surface of Au films on a-Si:H.
Resumo:
Metalorganic vapor-phase epitaxial growth of GaAs doped with isovalent Sb is reported. By increasing the trimethylantimony concentration during growth the total Sb concentration was varied between 1 X 10(17)-1 X 10(19) cm-3. A new deep level defect with an activation energy of the thermal emission rates of E(c) - 0.54 eV is observed. The defect concentration increases with increasing As partial pressure and with increasing Sb doping. It is also found that the EL2 concentration decreases with increasing Sb doping. The new energy level is suggested to be the 0/ + transition of the Sb(Ga) heteroantisite defect. No photocapacitance quenching effect, reflecting a metastable state as seen for EL2 (As(Ga)), is observed for Sb(Ga).
Resumo:
Alternating layers of Si(200 angstrom thick) and Ce(200 angstrom thick) up to 26 layers altogether were deposited by electron evaporation under ultrahigh vacuum conditions on Si(100) substrate held at 150-degrees-C. Isothermal, rapid thermal annealing has been used to react these Ce-Si multilayer films. A variety of analytical techniques has been used to study these multilayer films after annealing, and among these are Auger electron spectroscopy, Rutherford backscattering, X-ray diffraction, and high resolution transmission electron microscopy. Intermixing of these thin Ce-Si multilayer films has occurred at temperatures as low as 150-degrees-C for 2 h, when annealed. Increasing the annealing temperature from 150 to 400-degrees-C for 1 h, CeSi2 forms gradually and the completion of reaction occurs at approximately 300-400-degrees-C. During the formation of CeSi2 from 150-400-degrees-C, there is some evidence for small grains in the selected area diffraction patterns, indicating that CeSi2 crystallites were present in some regions. However, we have no conclusive evidence for the formation of epitaxial CeSi2 layers, only polycrystals were formed when reacted in the solid phase even after rapid thermal anneal at 900-degrees-C for 10 s. The formation mechanism has also been discussed in combining the results of the La-Si system.