992 resultados para Bandwidth Broadening Techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic profiles caused by rare earth complex were investigated using NMR and ICP-MS techniques. Male and female Wistar rats were treated orally with Changle (A kind of rare earth complex applied in agriculture to raise the production of crops) at dose of 2, 5 and 20 mg (.) kg(-1) body weight/day respectively for 90 d. Urine and serum samples are collected on 90 d. The relative concentrations of important endogenous metabolites in urine and serum are determined from H-1 NMR spectra and the contents of the four rare earth elements ( La, Ce, Pr and Nd) constituting Changle in the serum samples are measured by ICP-MS technique. Changle-induced renal and liver damage in rats is found based on the increase in the amounts of the amino acids, trimethylamine N-oxide, N, N-dimethyglycine, dimethylamine, succinate, aketoglutarate and ethanol as well as rare earth concentrations. The similarities and differentiations are found in the alteration patterns of metabolites and rare earth concentrations in serum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single chain polystyrene particles were obtained by dilute solution casting method. The sample with both single chain polystyrene particles and multi-chain (more than 1000 molecular chains) polystyrene particles was obtained by a little more concentrate solution. Force modulation technique showed that single chain polystyrene particles were softer than multichain polystyrene particles. On the other hand, nanoindentation experiments on multi-chain particles and bulk polystyrene manifested that the elastic modulus of multi-chain polystyrene particles was very close to that of bulk polystyrene. Therefore, it was concluded that single chain polystyrene particles were softer than bulk polystyrene,which indicated that the density of intrachain entanglement points in the single chain polystyrene particles was not as large as that of the interchain entanglement points in the bulk state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review is given on the recent development of scanning probe microscope (SPM) tip modification techniques for chemical force microscope, including the preparation and application of SPM tip modified by self-assembled monolayer, atomic force microscope (AFM) tip modified by biological molecule, scanning tunneling microscope tip modified by electrochemical method, AFM tip modified by carbon nanotube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ion exchange mechanism accompanying the oxidation/reduction processes of cupric hexacyanoferrate-modified platinum electrodes in different aqueous electrolyte solutions has been studied by means of in situ probe beam deflection and the electrochemical quartz crystal microbalance technique. The results demonstrate that the charge neutrality of the film during the reoxidation/reduction process is accomplished predominantly by the movement of cations, but anions and/or solvent are also participator(s). Moreover, in KHC8H4O4 (potassium biphthalate) solution, the EQCM data obtained from chronoamperometry experiment are more complicated than those in KCl and K2SO4 solutions. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of Kalman filtering, synchronous excitation and numerical derivative techniques for the resolution of overlapping emission spectra in spectrofluorimetry was studied. The extent of spectrum overlap was quantitatively described by the separation degree D(s), defined as the ratio of the peak separation to the full width at half-maximum of the emission spectrum of the interferent. For the system of Rhodamine B and Rhodamine 6G with a large D(s) of about 0.4, both Kalman filtering and synchronous techniques are able to resolve the overlapping spectra well and to give satisfactory results while the derivative spectra are still overlapped with each other. Moreover, the sensitivities are greatly decreased in derivative techniques. For more closely spaced spectra emitted by the complexes of Al and Zn with 7-iodo-8-hydroxyquinoline-5-sulphonic acid (Ferron)-hexadecyltrimethylammonium bromide, the synchronous excitation technique cannot completely separate the overlapping peaks, although it increases the separation degree from 0.25 in the conventional spectra to 0.37 in the synchronous spectra. On the other hand, Kalman filtering is capable of resolving this system. When the Al/Zn intensity ratio at the central wavelength of Al was > 1, however, the accuracy and precision of the estimates for Zn concentration produced by the Kalman filter became worse. In this event, the combination of synchronous excitation and Kalman filtering can much improve the analytical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper reports some definite evidence for the significance of wavelength positioning accuracy in multicomponent analysis techniques for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). Using scanning spectrometers commercially available today, a large relative error, DELTA(A) may occur in the estimated analyte concentration, owing to wavelength positioning errors, unless a procedure for data processing can eliminate the problem of optical instability. The emphasis is on the effect of the positioning error (deltalambda) in a model scan, which is evaluated theoretically and determined experimentally. A quantitative relation between DELTA(A) and deltalambda, the peak distance, and the effective widths of the analysis and interfering lines is established under the assumption of Gaussian line profiles. The agreement between calculated and experimental DELTA(A) is also illustrated. The DELTA(A) originating from deltalambda is independent of the net analyte/interferent signal ratio; this contrasts with the situation for the positioning error (dlambda) in a sample scan, where DELTA(A) decreases with an increase in the ratio. Compared with dlambda, the effect of deltalambda is generally less significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic signal is a typical non-stationary signal, whose frequency is continuously changing with time and is determined by the bandwidth of seismic source and the absorption characteristic of the media underground. The most interesting target of seismic signal’s processing and explaining is to know about the local frequency’s abrupt changing with the time, since this kind of abrupt changing is indicating the changing of the physical attributes of the media underground. As to the seismic signal’s instantaneous attributes taken from time-frequency domain, the key target is to search a effective, non-negative and fast algorithm time-frequency distribution, and transform the seismic signal into this time-frequency domain to get its instantaneous power spectrum density, and then use the process of weighted adding and average etc. to get the instantaneous attributes of seismic signal. Time-frequency analysis as a powerful tool to deal with time variant non-stationary signal is becoming a hot researching spot of modern signal processing, and also is an important method to make seismic signal’s attributes analysis. This kind of method provides joint distribution message about time domain and frequency domain, and it clearly plots the correlation of signal’s frequency changing with the time. The spectrum decomposition technique makes seismic signal’s resolving rate reach its theoretical level, and by the method of all frequency scanning and imaging the three dimensional seismic data in frequency domain, it improves and promotes the resolving abilities of seismic signal vs. geological abnormal objects. Matching pursuits method is an important way to realize signal’s self-adaptive decomposition. Its main thought is that any signal can be expressed by a series of time-frequency atoms’ linear composition. By decomposition the signal within an over completed library, the time-frequency atoms which stand for the signal itself are selected neatly and self-adaptively according to the signal’s characteristics. This method has excellent sparse decomposition characteristics, and is widely used in signal de-noising, signal coding and pattern recognizing processing and is also adaptive to seismic signal’s decomposition and attributes analysis. This paper takes matching pursuits method as the key research object. As introducing the principle and implementation techniques of matching pursuits method systematically, it researches deeply the pivotal problems of atom type’s selection, the atom dictionary’s discrete, and the most matching atom’s searching algorithm, and at the same time, applying this matching pursuits method into seismic signal’s processing by picking-up correlative instantaneous messages from time-frequency analysis and spectrum decomposition to the seismic signal. Based on the research of the theory and its correlative model examination of the adaptively signal decomposition with matching pursuit method, this paper proposes a fast optimal matching time-frequency atom’s searching algorithm aimed at seismic signal’s decomposition by frequency-dominated pursuit method and this makes the MP method pertinence to seismic signal’s processing. Upon the research of optimal Gabor atom’s fast searching and matching algorithm, this paper proposes global optimal searching method using Simulated Annealing Algorithm, Genetic Algorithm and composed Simulated Annealing and Genetic Algorithm, so as to provide another way to implement fast matching pursuit method. At the same time, aimed at the characteristics of seismic signal, this paper proposes a fast matching atom’s searching algorithm by means of designating the max energy points of complex seismic signal, searching for the most optimal atom in the neighbor area of these points according to its instantaneous frequency and instantaneous phase, and this promotes the calculating efficiency of seismic signal’s matching pursuit algorithm. According to these methods proposed above, this paper implements them by programmed calculation, compares them with some open algorithm and proves this paper’s conclusions. It also testifies the active results of various methods by the processing of actual signals. The problems need to be solved further and the aftertime researching targets are as follows: continuously seeking for more efficient fast matching pursuit algorithm and expanding its application range, and also study the actual usage of matching pursuit method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the structure and acidity properties of HZSM-5 zeolites with reduction in crystal sizes down to nanoscale (less than 100 nm) have been investigated by XRD, TEM and solid-state NMR with a system capable of in situ sample pretreatment. As evidenced by a combination of Al-27 MAS NMR, Si-29 MAS, CP/MAS NMR and H-1 MAS NMR techniques, the downsize of the zeolite crystal leads to an obvious line broadening of the Al-27, Si-29 MAS NMR spectrum, an increasing of the silanol concentration on the external surface, and a pronounced alteration of the acidity distribution between the external and internal surfaces of the zeolite. In a HZSM-5 zeolite with an average size at about 70 nm, the nonacidic hydroxyl groups (silanols) are about 14% with respect to the total amount of Si, while only 4% of such hydroxyl groups exist in the same kind of zeolite at 1000 nm crystal size. The result of H-1 MAS NMR obtained using Fluorinert(R) FC-43 (perfluorotributyl amine) as a probe molecule demonstrates that most of the silanols are located on the external surface of the zeolite. Moreover, the concentration of Bronsted acid sites on the external surface of the nano-structured zeolite appears to be distinctly higher than that of the microsized zeolite.