988 resultados para Antibody-mediated rejection
Resumo:
The proteasome produces MHC class I-restricted antigenic peptides carrying N-terminal extensions, which are trimmed by other peptidases in the cytosol or within the endoplasmic reticulum. In this study, we show that the N-terminal editing of an antigenic peptide with a predicted low TAP affinity can occur in the cytosol. Using proteomics, we identified two cytosolic peptidases, tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, that trimmed the N-terminal extensions of the precursors produced by the proteasome, and led to a transient enrichment of the final antigenic peptide. These peptidases acted either sequentially or redundantly, depending on the extension remaining at the N terminus of the peptides released from the proteasome. Inhibition of these peptidases abolished the CTL-mediated recognition of Ag-expressing cells. Although we observed some proteolytic activity in fractions enriched in endoplasmic reticulum, it could not compensate for the loss of tripeptidyl peptidase II/puromycin-sensitive aminopeptidase activities.
Resumo:
BACKGROUND: Fully efficient vaccines against malaria pre-erythrocytic stage are still lacking. The objective of this dose/adjuvant-finding study was to evaluate the safety, reactogenicity and immunogenicity of a vaccine candidate based on a peptide spanning the C-terminal region of Plasmodium falciparum circumsporozoite protein (PfCS102) in malaria naive adults. METHODOLOGY AND PRINCIPAL FINDINGS: Thirty-six healthy malaria-naive adults were randomly distributed into three dose blocks (10, 30 and 100 microg) and vaccinated with PfCS102 in combination with either Montanide ISA 720 or GSK proprietary Adjuvant System AS02A at days 0, 60, and 180. Primary end-point (safety and reactogenicity) was based on the frequency of adverse events (AE) and of abnormal biological safety tests; secondary-end point (immunogenicity) on P. falciparum specific cell-mediated immunity and antibody response before and after immunization. The two adjuvant formulations were well tolerated and their safety profile was good. Most AEs were local and, when systemic, involved mainly fatigue and headache. Half the volunteers in AS02A groups experienced severe AEs (mainly erythema). After the third injection, 34 of 35 volunteers developed anti-PfCS102 and anti-sporozoite antibodies, and 28 of 35 demonstrated T-cell proliferative responses and IFN-gamma production. Five of 22 HLA-A2 and HLA-A3 volunteers displayed PfCS102 specific IFN-gamma secreting CD8(+) T cell responses. Responses were only marginally boosted after the 3(rd) vaccination and remained stable for 6 months. For both adjuvants, the dose of 10 microg was less immunogenic in comparison to 30 and 100 microg that induced similar responses. AS02A formulations with 30 microg or 100 microg PfCS102 induced about 10-folds higher antibody and IFN-gamma responses than Montanide formulations. CONCLUSIONS/SIGNIFICANCE: PfCS102 peptide was safe and highly immunogenic, allowing the design of more advanced trials to test its potential for protection. Two or three immunizations with a dose of 30 microg formulated with AS02A appeared the most appropriate choice for such studies. TRIAL REGISTRATION: Swissmedic.ch 2002 DR 1227.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.
Resumo:
The glyoxalase system is the most important pathway for the detoxification of methylglyoxal (MG), a highly reactive dicarbonyl compound mainly formed as a by-product of glycolysis. MG is a major precursor of advanced glycation end products (AGEs), which are associated with several neurodegenerative disorders. Although the neurotoxic effects of MG and AGEs are well characterized, little is known about the glyoxalase system in the brain, in particular with regards to its activity in different neural cell types. Results of the present study reveal that both enzymes composing the glyoxalase system [glyoxalase-1 (Glo-1) and Glo-2] were highly expressed in primary mouse astrocytes compared with neurons, which translated into higher enzymatic activity rates in astrocytes (9.9- and 2.5-fold, respectively). The presence of a highly efficient glyoxalase system in astrocytes was associated with lower accumulation of AGEs compared with neurons (as assessed by Western blotting), a sixfold greater resistance to MG toxicity, and the capacity to protect neurons against MG in a coculture system. In addition, Glo-1 downregulation using RNA interference strategies resulted in a loss of viability in neurons, but not in astrocytes. Finally, stimulation of neuronal glycolysis via lentiviral-mediated overexpression of 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase-3 resulted in increased MG levels and MG-modified proteins. Since MG is largely produced through glycolysis, this suggests that the poor capacity of neurons to upregulate their glycolytic flux as compared with astrocytes may be related to weaker defense mechanisms against MG toxicity. Accordingly, the neuroenergetic specialization taking place between these two cell types may serve as a protective mechanism against MG-induced neurotoxicity.
Resumo:
IL-2 immunotherapy is an attractive treatment option for certain metastatic cancers. However, administration of IL-2 to patients can lead, by ill-defined mechanisms, to toxic adverse effects including severe pulmonary edema. Here, we show that IL-2-induced pulmonary edema is caused by direct interaction of IL-2 with functional IL-2 receptors (IL-2R) on lung endothelial cells in vivo. Treatment of mice with high-dose IL-2 led to efficient expansion of effector immune cells expressing high levels of IL-2Rbetagamma, including CD8(+) T cells and natural killer cells, which resulted in a considerable antitumor response against s.c. and pulmonary B16 melanoma nodules. However, high-dose IL-2 treatment also affected immune cell lineage marker-negative CD31(+) pulmonary endothelial cells via binding to functional alphabetagamma IL-2Rs, expressed at low to intermediate levels on these cells, thus causing pulmonary edema. Notably, IL-2-mediated pulmonary edema was abrogated by a blocking antibody to IL-2Ralpha (CD25), genetic disruption of CD25, or the use of IL-2Rbetagamma-directed IL-2/anti-IL-2 antibody complexes, thereby interfering with IL-2 binding to IL-2Ralphabetagamma(+) pulmonary endothelial cells. Moreover, IL-2/anti-IL-2 antibody complexes led to vigorous activation of IL-2Rbetagamma(+) effector immune cells, which generated a dramatic antitumor response. Thus, IL-2/anti-IL-2 antibody complexes might improve current strategies of IL-2-based tumor immunotherapy.
Resumo:
BALB/c mice were immunized with anti-idiotypic monoclonal (MAb) antibody (anti-Id or Ab2) directed against an AB1 MAb anti-carcinoembryonic (CEA) in order to obtain AB3 MAbs (anti-anti-Id). AB3 MAbs were shown to recognise the primary antigen (CEA) and one of them was tested extensively in vitro and in vivo. This AB3 MAb was shown to bind specifically to CEA on frozen sections of a human colon carcinoma by immunoperoxidase. Scatchard plot analyses showed that the affinity of this AB3 was of the same order of magnitude as the AB1. In vivo experiments, in nude mice bearing CEA-producing human colon-carcinoma xenografts showed that up to 30% of the intravenously injected dose of 125I-labelled AB3 were localized per gram of tumour tissue. Furthermore, calculation of the ratios of AB3 concentration in the tumour over those in normal organs such as lung, liver, kidney, spleen and bone gave relatively high values similar to results obtained with AB1. All together our results show that AB3 can localize as efficiently and specifically in the tumour as AB1, despite the fact that the mice from which it was derived were immunized with a mouse MAb (AB2) and had never been exposed to CEA.
Resumo:
Direct type I interferon (IFN) signaling on T cells is necessary for the proper expansion, differentiation, and survival of responding T cells following infection with viruses prominently inducing type I IFN. The reasons for the abortive response of T cells lacking the type I IFN receptor (Ifnar1(-/-)) remain unclear. We report here that Ifnar1(-/-) T cells were highly susceptible to natural killer (NK) cell-mediated killing in a perforin-dependent manner. Depletion of NK cells prior to lymphocytic choriomeningitis virus (LCMV) infection completely restored the early expansion of Ifnar1(-/-) T cells. Ifnar1(-/-) T cells had elevated expression of natural cytotoxicity triggering receptor 1 (NCR1) ligands upon infection, rendering them targets for NCR1 mediated NK cell attack. Thus, direct sensing of type I IFNs by T cells protects them from NK cell killing by regulating the expression of NCR1 ligands, thereby revealing a mechanism by which T cells can evade the potent cytotoxic activity of NK cells.
Resumo:
Le développement des cellules B est constitué d'une première phase qui se déroule dans la moelle en absence d'antigène et d'une deuxième phase qui se déroule dans les organes lymphoïdes secondaires et qui débute uniquement en présence d'antigène. Cette deuxième partie est extrêmement importante et doit être très bien régulée pour lutter efficacement contre les pathogènes, ainsi que pour éviter de nombreuses maladies de type auto-immunes. Ce travail est basé à l'origine sur l'étude de souris mutantes dans lesquelles une protéine des cellules T est modifiée, impliquant une très forte activation des cellules B en absence d'antigène et de manière non spécifique. Ces souris constituent donc un outil de travail très intéressant pour étudier tout d'abord le mécanisme aboutissant à l'activation des cellules B dans ce contexte particulier. De plus comme ces souris contiennent énormément de cellules sécrétant des anticorps, à savoir les plasmocytes, il est facile d'étudier leur phénotype. Cela nous a permis de démontrer qu'un récepteur membranaire, CD93 est exprimé à leur surface. Cette observation a ensuite été confirmée dans des souris normales, de type sauvage. L'utilisation de ce marqueur de surface nous a permis de caractériser plus en détail les étapes du développement des plasmocytes. De plus nous avons tenté de trouver la fonction jouée par cette molécule à la surface de ces cellules, en utilisant des souris dans lesquelles ce récepteur a été supprimé. Si les premières étapes de l'activation des cellules B étaient normales, ces souris n'étaient par contre pas capables de produire des anticorps à long-terme dans le sang. Nous avons pu montrer que la survie des plasmocytes en l'absence de CD93 est moins efficace dans la moelle, probablement du au fait qu'en absence de cette molécule, les plasmocytes ont plus de difficultés à adhérer dans ce que l'on appelle des niches de survie. Nous avons essayé ensuite de déterminer si CD93 peut être utilisé comme cible thérapeutique dans le cadre de maladies auto-immunes ou de lymphomes. Bien que CD93 soit exprimé à la surface des cellules d'intérêt dans les souris souffrant de lupus, il n'a pas été possible de les éliminer avec un anticorps dirigé contre CD93. De plus nous n'avons pas pu mettre en évidence l'expression de CD93 à la surface des plasmocytes humains induits in vitro. SUMMARY : Antigen dependent B cell activation is a key aspect of the adaptive immunity which is involved in the efficient response against pathogens, but also in vaccination and in numerous pathologies. The aim of this project was to investigate two key aspects of the late B cell development, namely the role of costimulatory molecules in the immunological synapse between T and B cells and the characterization of a new plasma cell marker, CD93. This work was initially based on the study of the LatY136F mutant mouse. The latter harbors a point mutation in the LAT adaptor protein which is involved in T cell receptor signaling. As a consequence of this mutation, CD4 T cells in the periphery expand strongly and are polarized in a TH2 manner leading to a normal but exaggerated B cell response. For this reason, these mice provide a useful tool to investigate different aspects of the late B cell development. The first part of the project was focused on the role played by costimulatory molecules in LotY136F CD4 T cell mediated B cell activation. In vitro studies showed that CD80/CD86, IL-4 and LFA-1 were required for LatY136FT cells to activate B cells whereas CD40 and IcosL were not necessary. In vivo we showed that CD80/CD86 was required for initial T cell expansion whereas CD40 and IcosL deficiency led to a less efficient B cell activation. The large amount of plasma cells present in LatY136F mice allows investigating in more details their phenotype and CD93 was found to be expressed on their surface, This observation was confirmed in wild type B cells activated either in vivo or in vitro with T-independent or T-dependent antigens. Moreover we found that CD93 expression can occur either before CD138/Blimp-1 induction or after, showing that two independent pathways can lead to the formation of CD93/CD138 double positive population, which was shown to be the more mature. Indeed, their phenotype correlated with modified transcriptional network, high isotype switched antibody secretion and cell cycle arrest. Analysis of CD93 deficient mice demonstrated that the initial B cell activation after immunization was normal, but also showed that these mice failed to maintain a high antibody secretion level at later time points both after primary and boost immunization. This was shown to be due to a less efficient survival of the long-lived plasma cells in the bone marrow niches, most likely related with a defective adhesion process in absence of CD93. We investigated the possibility to use CD93 as a target to treat plasma cell pathologies, but even if this molecule is expressed on cells of interest in the bone marrow of lupus mice, it was not possible to deplete them using anti-CD93 antibodies. Moreover we were not able to show its expression on the surface of in vitro activated B cells and multiple myeloma cell lines of human origin. In conclusion, our data helped understand both the mechanisms leading to the polyclonal B cell activation occurring in the LatY136F KI mouse and the role played by CD93 on the surface of plasma cells, which could potentially open the way to therapeutic application.
Resumo:
Background. Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to modulate multiple cellular processes, including apoptosis. The aim of this study was to assess the effects of HCV NS5A on apoptosis induced by Toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). Methods. Apoptotic responses to TLR4 ligands and the expression of molecules involved in TLR signaling pathways in human hepatocytes were examined with or without expression of HCV NS5A. Results. HCV NS5A protected HepG2 hepatocytes against LPS-induced apoptosis, an effect linked to reduced TLR4 expression. A similar downregulation of TLR4 expression was observed in Huh-7-expressing genotype 1b and 2a. In agreement with these findings, NS5A inhibited the expression of numerous genes encoding for molecules involved in TLR4 signaling, such as CD14, MD-2, myeloid differentiation primary response gene 88, interferon regulatory factor 3, and nuclear factor-κB2. Consistent with a conferred prosurvival advantage, NS5A diminished the poly(adenosine diphosphate-ribose) polymerase cleavage and the activation of caspases 3, 7, 8, and 9 and increased the expression of anti-apoptotic molecules Bcl-2 and c-FLIP. Conclusions. HCV NS5A downregulates TLR4 signaling and LPS-induced apoptotic pathways in human hepatocytes, suggesting that disruption of TLR4-mediated apoptosis may play a role in the pathogenesis of HCV infection.
Resumo:
Soluble MHC-peptide (pMHC) complexes induce intracellular calcium mobilization, diverse phosphorylation events, and death of CD8+ CTL, given that they are at least dimeric and co-engage CD8. By testing dimeric, tetrameric, and octameric pMHC complexes containing spacers of different lengths, we show that their ability to activate CTL decreases as the distance between their subunit MHC complexes increases. Remarkably, pMHC complexes containing long rigid polyproline spacers (> or =80 A) inhibit target cell killing by cloned S14 CTL in a dose- and valence-dependent manner. Long octameric pMHC complexes abolished target cell lysis, even very strong lysis, at nanomolar concentrations. By contrast, an altered peptide ligand antagonist was only weakly inhibitory and only at high concentrations. Long D(b)-gp33 complexes strongly and specifically inhibited the D(b)-restricted lymphocytic choriomeningitis virus CTL response in vitro and in vivo. We show that complications related to transfer of peptide from soluble to cell-associated MHC molecules can be circumvented by using covalent pMHC complexes. Long pMHC complexes efficiently inhibited CTL target cell conjugate formation by interfering with TCR-mediated activation of LFA-1. Such reagents provide a new and powerful means to inhibit Ag-specific CTL responses and hence should be useful to blunt autoimmune disorders such as diabetes type I.
Resumo:
Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.
Resumo:
The Ly49 natural killer (NK)-cell receptor family comprises both activating and inhibitory members, which recognize major histocompatibility complex (MHC) class I or MHC class I-related molecules and are involved in target recognition. As previously shown, the Ly49E receptor fails to bind to a variety of soluble or cell-bound MHC class I molecules, indicating that its ligand is not an MHC class I molecule. Using BWZ.36 reporter cells, we demonstrate triggering of Ly49E by the completely distinct, non-MHC-related protein urokinase plasminogen activator (uPA). uPA is known to be secreted by a variety of cells, including epithelial and hematopoietic cells, and levels are up-regulated during tissue remodeling, infections, and tumorigenesis. Here we show that addition of uPA to Ly49E-positive adult and fetal NK cells inhibits interferon-gamma secretion and reduces their cytotoxic potential, respectively. These uPA-mediated effects are Ly49E-dependent, as they are reversed by addition of anti-Ly49E monoclonal antibody and by down-regulation of Ly49E expression using RNA interference. Our results suggest that uPA, besides its established role in fibrinolysis, tissue remodeling, and tumor metastasis, could be involved in NK cell-mediated immune surveillance and tumor escape.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism, is overexpressed in many cancers. Inhibition of COX-2 by nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of cancer development in humans and suppresses tumor growth in animal models. The anti-cancer effect of NSAIDs seems to involve suppression of tumor angiogenesis, but the underlying mechanism is not completely understood. Integrin alpha V beta 3 is an adhesion receptor critically involved in mediating tumor angiogenesis. Here we show that inhibition of endothelial-cell COX-2 by NSAIDs suppresses alpha V beta 3-dependent activation of the small GTPases Cdc42 and Rac, resulting in inhibition of endothelial-cell spreading and migration in vitro and suppression of fibroblast growth factor-2-induced angiogenesis in vivo. These results establish a novel functional link between COX-2, integrin alpha V beta 3 and Cdc42-/Rac-dependent endothelial-cell migration. Moreover, they provide a rationale to the understanding of the anti-angiogenic activity of NSAIDs.