984 resultados para Alternative Sigma-factor
Resumo:
By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of pipe diameter (D) on the vertical uplift resistance of a long horizontal pipeline embedded in sand has been investigated. The analysis has been performed by using the lower bound finite-element limit analysis in combination with nonlinear optimization. Three well-defined phi versus sigma(m) curves reported from literature for different sands have been used. It is observed that for a given embedment ratio, with an increase in pipe diameter, the magnitude of the uplift factor (F-gamma) reduces quite significantly, which indicates the importance of considering scale effects while designing buried pipe lines. The scale effects have been found to become even more substantial with an increase in the embedment ratio. The analysis compares well with various theoretical results reported from literature. On the other hand, as compared to available centrifuge test results, the present analysis has been found to provide quite a higher magnitude of the uplift resistance when the theoretical prediction is based on peak soil friction angle. However, if the theoretical analysis is performed by using the friction angle that accounts for the progressive shear failure, the difference between the theoretical and centrifuge test results decreases quite significantly.(C) 2013 American Society of Civil Engineers.
Resumo:
Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Two new Ru(II)-complexes RuH(Tpms)(PPh3)(2)] 1 (Tpms - (C3H3N2)(3)CSO3, tris-(pyrazolyl) methane sulfonate) and Ru(OTf)(Tpms)(PPh3)(2)] 2 (OTf = CF3SO3) have been synthesized and characterized wherein Ru-H and Ru-OTf are the key reactive centers. Reaction of 1 with HOTf results in the Ru(eta(2)-H-2)(Tpms)(PPh3)(2)]OTf] complex 3, whereas reaction of 1 with Me3SiOTf affords the dihydrogen complex 3 and complex 1 through an unobserved sigma-silane intermediate. In addition, an attempt to characterize the sigma methane complex via reaction of complex 1 with CH3OTf yields complex 2 and free methane. On the other hand, reaction of Ru(OTf)(Tpms)(PPh3)(2)] 2 with H-2 and PhMe2SiH at low temperature resulted in sigma-H-2, 3 and a probable sigma-silane complexes, respectively. However, no sigma-methane complex was observed for the reaction of complex 2 with methane even at low temperature. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
The TSC2 gene, mutated in patients with tuberous sclerosis complex (TSC), encodes a 200 kDa protein TSC2 (tuberin). The importance of TSC2 in the regulation of cell growth and proliferation is irrefutable. TSC2 in complex with TSC1 negatively regulates the mTOR complex 1 (mTORC1) via RHEB in the PI3K-AKT-mTOR pathway and in turn regulates cell proliferation. It shows nuclear as well as cytoplasmic localization. However, its nuclear function remains elusive. In order to identify the nuclear function of TSC2, a whole-genome expression profiling of TSC2 overexpressing cells was performed, and the results showed differential regulation of 266 genes. Interestingly, transcription was found to be the most populated functional category. EREG (Epiregulin), a member of the epidermal growth factor family, was found to be the most downregulated gene in the microarray analysis. Previous reports have documented elevated levels of EREG in TSC lesions, making its regulatory aspects intriguing. Using the luciferase reporter, ChIP and EMSA techniques, we show that TSC2 binds to the EREG promoter between -352 bp and -303 bp and negatively regulates its expression. This is the first evidence for the role of TSC2 as a transcription factor and of TSC2 binding to the promoter of any gene.
Resumo:
The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris Delta Trm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Background: Dictamnus dasycarpus is widely used as a traditional remedy for the treatment of eczema, rheumatism, and other inflammatory diseases in Asia. The current study investigates the molecular mechanism of anti-inflammatory action of the ethanol extract of Dictamnus dasycarpus leaf (DE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Nitric oxide (NO) production was assessed by Griess reaction and the mRNA and protein expressions of pro inflammatory cytokines, transcription factor, and enzymes were determined by real-time RT-PCR and immunoblotting analysis. Results: DE (0.5 and 1 mg/mL) suppressed the NO production by 10 and 33%, respectively, compared to the untreated group in LPS-stimulated RAW 264.7 cells. DE (0.5 and 1 mg/mL) reduced the mRNA expression of key transcription factor nuclear factor-kappa B by 7 and 24%, respectively compared to the untreated group in LPS activated macrophage. The pro inflammatory cytokines such as tumor necrosis factor a and interleukin 1 beta were also decreased by DE treatment. Moreover, the protein expression of pro inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase 2 were also dramatically attenuated by DE in a dose dependent manner. Conclusions: These results suggest that Dictamnus dasycarpus leaf has a potent anti-inflammatory activity and can be used for the development of new anti-inflammatory agents.
Resumo:
Background: Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guerin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods: Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-alpha in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain-and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-alpha treatment. Results: Here, we show that BCG inhibits TNF-alpha-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-alpha-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53(-/-) and MDA-MB-231 cells. Conclusion: Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers.
Resumo:
Chromatin immunoprecipitation identified 191 binding sites of Mycobacterium tuberculosis cAMP receptor protein (CRPMt) at endogenous expression levels using a specific alpha-CRPMt antibody. Under these native conditions an equal distribution between intragenic and intergenic locations was observed. CRPMt binding overlapped a palindromic consensus sequence. Analysis by RNA sequencing revealed widespread changes in transcriptional profile in a mutant strain lacking CRPMt during exponential growth, and in response to nutrient starvation. Differential expression of genes with a CRPMt-binding site represented only a minor portion of this transcriptional reprogramming with similar to 19% of those representing transcriptional regulators potentially controlled by CRPMt. The subset of genes that are differentially expressed in the deletion mutant under both culture conditions conformed to a pattern resembling canonical CRP regulation in Escherichia coli, with binding close to the transcriptional start site associated with repression and upstream binding with activation. CRPMt can function as a classical transcription factor in M. tuberculosis, though this occurs at only a subset of CRPMt-binding sites.
Resumo:
This article presents our work on the sigma-Ferrier ring-expansion of carbohydrate derived vinylcyclopropanes (VCPs) under electrophilic conditions mediated by chloramine-T and a phase-transfer catalyst. The present work serves as the first example on the studies of the reactivity of carbohydrate VCPs towards the synthesis of densely functionalized oxepane analogues. The work elaborates on a reasonable mechanism for the product formation and our observations on the diastereoselectivity based on control experiments and gas-phase calculations. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Background: mIHF belongs to a subfamily of proteins, distinct from E. coli IHF. Results: Functionally important amino acids of mIHF and the mechanism(s) underlying DNA binding, DNA bending, and site-specific recombination are distinct from that of E. coli IHF. Conclusion: mIHF functions could contribute beyond nucleoid compaction. Significance: Because mIHF is essential for growth, the molecular mechanisms identified here can be exploited in drug screening efforts. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ihfA and ihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.
Resumo:
Fmoc-Leu-psiCH2NCS] undergoes a reversible isomorphous phase transition upon cooling. The crystal structure at 100 K displays a short N=C=S center dot center dot center dot N=C=S intermolecular interaction, which has been characterized based on experimental charge density analysis, as a stabilizing interaction with both sigma-holes and pi-holes acting cooperatively.
Resumo:
A few advanced bus-clamping pulse width modulation (ABCPWM) methods have been proposed recently for a three-phase inverter. With these methods, each phase is clamped, switched at nominal frequency, and switched at twice the nominal frequency in different regions of the fundamental cycle. This study proposes a generalised ABCPWM scheme, encompassing the few ABCPWM schemes that have been proposed and many more ABCPWM schemes that have not been reported yet. Furthermore, analytical closed-form expression is derived for the harmonic distortion factor corresponding to the generalised ABCPWM. This factor is independent of load parameters. The analytical expression derived here brings out the dependence of root-mean-square (RMS) current ripple on modulation index, and can be used to evaluate the RMS current ripple corresponding to any ABCPWM scheme. The analytical closed-form expression is validated experimentally in terms of measured weighted total harmonic distortion (THD) in line voltage (V-WTHD) and measured THD in line current (I-THD) on a 6 kW induction motor drive.
Resumo:
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic omega pi form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the omega pi form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV.
Resumo:
In the titled tricyclic orthocarbonate derivative, the three endocyclic C-O bonds are longer than the exo-cyclic C-O bond (similar to 4.40 angstrom vs. similar to 1.37 angstrom). This indicates an anomeric-type interaction between the two electron lone pairs on the exocyclic oxygen atom and the antibonding orbitals of the two antiperiplanar endocyclic C-O bonds. The remaining endocyclic C-O bond - marginally shorter than the other two apparently adds to this effect. Intriguingly, the antibonding orbital of the exocyclic C-O bond extends into the interior of the adamantyl cage, and is stereoelectronically prevented from overlapping with any of the six adjacent lone pairs. The results also seem to indicate a preference for interaction between a single donor oxygen atom and multiple acceptor antibonding orbitals rather than vice versa. The results add insightfully to the substantial body of evidence favouring the antiperiplanar lone pair hypothesis (ALPH). (C) 2014 Elsevier B.V. All rights reserved.