965 resultados para Algebra, Boolean
Resumo:
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.
Resumo:
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <
Resumo:
Ce mémoire, composé d'un article en collaboration avec Monsieur Luc Vinet et Vincent X. Genest, est la suite du travail effectué sur les systèmes quantiques super-intégrables définis par des Hamiltoniens de type Dunkl. Plus particulièrement, ce mémoire vise l'analyse du problème de Coulomb-Dunkl dans le plan qui est une généralisation du système quantique de l'atome d'hydrogène impliquant des opérateurs de réflexion sur les variables x et y. Le modèle est défini par un potentiel en 1/r. Nous avons tout d'abord remarqué que l'Hamiltonien est séparable en coordonnées polaires et que les fonctions d'onde s'écrivent en termes de produits de polynômes de Laguerre généralisés et des harmoniques de Dunkl sur le cercle. L'algèbre générée par les opérateurs de symétrie nous a également permis de confirmer le caractère maximalement super-intégrable du problème de Coulomb-Dunkl. Nous avons aussi pu écrire explicitement les représentations de cette même algèbre. Nous avons finalement trouvé le spectre de l'énergie de manière algébrique.
Resumo:
Thèse par articles.
Resumo:
Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus particulièrement, nous considérons la métrique, les formes fondamentales et la courbure gaussienne induites par ces surfaces naturellement plongées dans l'algèbre de Lie su(n). Le premier chapitre présente des outils préliminaires pour comprendre les éléments des chapitres suivants. Nous y présentons les théories de jauge non-abéliennes et les modèles sigma grassmanniens bosoniques ainsi que supersymétriques. Nous nous intéressons aussi à la construction de surfaces dans l'algèbre de Lie su(n) à partir des solutions des modèles sigma bosoniques. Les trois prochains chapitres, formant cette thèse, présentent les contraintes devant être imposées sur les solutions de ces modèles afin d'obtenir des surfaces à courbure gaussienne constante. Ces contraintes permettent d'obtenir une classification des solutions en fonction des valeurs possibles de la courbure. Les chapitres 2 et 3 de cette thèse présentent une analyse de ces surfaces et de leurs solutions classiques pour les modèles sigma grassmanniens bosoniques. Le quatrième consiste en une analyse analogue pour une extension supersymétrique N=2 des modèles sigma bosoniques G(1,n)=CP^(n-1) incluant quelques résultats sur les modèles grassmanniens. Dans le deuxième chapitre, nous étudions les propriétés géométriques des surfaces associées aux solutions holomorphes des modèles sigma grassmanniens bosoniques. Nous donnons une classification complète de ces solutions à courbure gaussienne constante pour les modèles G(2,n) pour n=3,4,5. De plus, nous établissons deux conjectures sur les valeurs constantes possibles de la courbure gaussienne pour G(m,n). Nous donnons aussi des éléments de preuve de ces conjectures en nous appuyant sur les immersions et les coordonnées de Plücker ainsi que la séquence de Veronese. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Le troisième chapitre présente une analyse des surfaces à courbure gaussienne constante associées aux solutions non-holomorphes des modèles sigma grassmanniens bosoniques. Ce travail généralise les résultats du premier article et donne un algorithme systématique pour l'obtention de telles surfaces issues des solutions connues des modèles. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Dans le dernier chapitre, nous considérons une extension supersymétrique N=2 du modèle sigma bosonique ayant pour espace cible G(1,n)=CP^(n-1). Ce chapitre décrit la géométrie des surfaces obtenues des solutions du modèle et démontre, dans le cas holomorphe, qu'elles ont une courbure gaussienne constante si et seulement si la solution holomorphe consiste en une généralisation de la séquence de Veronese. De plus, en utilisant une version invariante de jauge du modèle en termes de projecteurs orthogonaux, nous obtenons des solutions non-holomorphes et étudions la géométrie des surfaces associées à ces nouvelles solutions. Ces résultats sont soumis dans la revue Communications in Mathematical Physics.
Resumo:
Ce mémoire a deux objectifs principaux. Premièrement de développer et interpréter les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de borner la dimension cohomologique des k-algèbres par dessous; montrant que presque aucune k-algèbre commutative est quasi-libre.
Resumo:
Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.
Resumo:
Les fonctions génératrices des coefficients de Clebsch Gordan pour la superalgèbre de Lie osp(1|2) sont dérivées en utilisant deux approches. Une première approche généralise une méthode proposée par Granovskii et Zhedanov pour l'appliquer dans le cas de osp(1|2), une algèbre dont le coproduit est torsadé. Une seconde approche repose sur la réalisation de osp(1|2) en tant qu'algèbre dynamique d'un oscillateur parabosonique et utilise une équivalence dans cette réalisation entre le changements de coordonnées polaires à cartésiennes et le problème de Clebsch-Gordan. Un chapitre moins formel précède ces dérivations et présente comment le problème de Clebsch-Gordan s'interprète en tant que réalisation d'une algèbre de fusion. La notion abstraite de fusion est introduite, soulignant son importance en physique, pour en venir au cas particulier du problème de Clebsch-Gordan. Un survol du cas de l'algèbre osp(1|2) et de ses utilisations en physique mathématique conclut ce chapitre.
Resumo:
Ernst Zermelo presented an argument showing that there is no set of all sets that are members of themselves in a letter to Edmund Husserl on April 16th of 1902, and so just barely anticipated the same contradiction in Betrand Russell’s letter to Frege from June 16th of that year. This paper traces the origins of Zermelo’s paradox in Husserl’s criticisms of a peculiar argument in Ernst Schroeder’s 1890 Algebra der Logik. Frege had also criticized that argument in his 1985 “A Critical Elucidation of Some Points in E. Schroeder Vorlesungen über die Algebra der Logik”, but did not see the paradox that Zermelo found. Alonzo Church, in “Schroeder’s Anticipation of the Simple Theory of Types” from 1939, cricized Frege’s treatment of Schroeder’s views, but did not identify the connection with Russell’s paradox.
Resumo:
This thesis Entitled Spectral theory of bounded self-adjoint operators -A linear algebraic approach.The main results of the thesis can be classified as three different approaches to the spectral approximation problems. The truncation method and its perturbed versions are part of the classical linear algebraic approach to the subject. The usage of block Toeplitz-Laurent operators and the matrix valued symbols is considered as a particular example where the linear algebraic techniques are effective in simplifying problems in inverse spectral theory. The abstract approach to the spectral approximation problems via pre-conditioners and Korovkin-type theorems is an attempt to make the computations involved, well conditioned. However, in all these approaches, linear algebra comes as the central object. The objective of this study is to discuss the linear algebraic techniques in the spectral theory of bounded self-adjoint operators on a separable Hilbert space. The usage of truncation method in approximating the bounds of essential spectrum and the discrete spectral values outside these bounds is well known. The spectral gap prediction and related results was proved in the second chapter. The discrete versions of Borg-type theorems, proved in the third chapter, partly overlap with some known results in operator theory. The pure linear algebraic approach is the main novelty of the results proved here.
Resumo:
Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. Even mathematicians like H. Poincare worried about this. He observed that mathematical models are over idealizations, for instance, he said that only in Mathematics, equality is a transitive relation. A first attempt to save this situation was perhaps given by K. Menger in 1951 by introducing the concept of statistical metric space in which the distance between points is a probability distribution on the set of nonnegative real numbers rather than a mere nonnegative real number. Other attempts were made by M.J. Frank, U. Hbhle, B. Schweizer, A. Sklar and others. An aspect in common to all these approaches is that they model impreciseness in a probabilistic manner. They are not able to deal with situations in which impreciseness is not apparently of a probabilistic nature. This thesis is confined to introducing and developing a theory of fuzzy semi inner product spaces.
Resumo:
Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. The 1st chapter give a brief summary of the arithmetic of fuzzy real numbers and the fuzzy normed algebra M(I). Also we explain a few preliminary definitions and results required in the later chapters. Fuzzy real numbers are introduced by Hutton,B [HU] and Rodabaugh, S.E[ROD]. Our definition slightly differs from this with an additional minor restriction. The definition of Clementina Felbin [CL1] is entirely different. The notations of [HU]and [M;Y] are retained inspite of the slight difference in the concept.the 3rd chapter In this chapter using the completion M'(I) of M(I) we give a fuzzy extension of real Hahn-Banch theorem. Some consequences of this extension are obtained. The idea of real fuzzy linear functional on fuzzy normed linear space is introduced. Some of its properties are studied. In the complex case we get only a slightly weaker analogue for the Hahn-Banch theorem, than the one [B;N] in the crisp case
Resumo:
The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [Bieberbach1916]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Louis de Branges in 1984 [deBranges1985] when some experts were rather trying to disprove it. It turned out that an inequality of Askey and Gasper [AskeyGasper1976] about certain hypergeometric functions played a crucial role in de Branges' proof. In this article I describe the historical development of the conjecture and the main ideas that led to the proof. The proof of Lenard Weinstein (1991) [Weinstein1991] follows, and it is shown how the two proofs are interrelated. Both proofs depend on polynomial systems that are directly related with the Koebe function. At this point algorithms of computer algebra come into the play, and computer demonstrations are given that show how important parts of the proofs can be automated.
Resumo:
This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.
Resumo:
Bei der Bestimmung der irreduziblen Charaktere einer Gruppe vom Lie-Typ entwickelte Lusztig eine Theorie, in der eine sogenannte Fourier-Transformation auftaucht. Dies ist eine Matrix, die nur von der Weylgruppe der Gruppe vom Lie-Typ abhängt. Anhand der Eigenschaften, die eine solche Fourier- Matrix erfüllen muß, haben Geck und Malle ein Axiomensystem aufgestellt. Dieses ermöglichte es Broue, Malle und Michel füur die Spetses, über die noch vieles unbekannt ist, Fourier-Matrizen zu bestimmen. Das Ziel dieser Arbeit ist eine Untersuchung und neue Interpretation dieser Fourier-Matrizen, die hoffentlich weitere Informationen zu den Spetses liefert. Die Werkzeuge, die dabei entstehen, sind sehr vielseitig verwendbar, denn diese Matrizen entsprechen gewissen Z-Algebren, die im Wesentlichen die Eigenschaften von Tafelalgebren besitzen. Diese spielen in der Darstellungstheorie eine wichtige Rolle, weil z.B. Darstellungsringe Tafelalgebren sind. In der Theorie der Kac-Moody-Algebren gibt es die sogenannte Kac-Peterson-Matrix, die auch die Eigenschaften unserer Fourier-Matrizen besitzt. Ein wichtiges Resultat dieser Arbeit ist, daß die Fourier-Matrizen, die G. Malle zu den imprimitiven komplexen Spiegelungsgruppen definiert, die Eigenschaft besitzen, daß die Strukturkonstanten der zugehörigen Algebren ganze Zahlen sind. Dazu müssen äußere Produkte von Gruppenringen von zyklischen Gruppen untersucht werden. Außerdem gibt es einen Zusammenhang zu den Kac-Peterson-Matrizen: Wir beweisen, daß wir durch Bildung äußerer Produkte von den Matrizen vom Typ A(1)1 zu denen vom Typ C(1) l gelangen. Lusztig erkannte, daß manche seiner Fourier-Matrizen zum Darstellungsring des Quantendoppels einer endlichen Gruppe gehören. Deswegen ist es naheliegend zu versuchen, die noch ungeklärten Matrizen als solche zu identifizieren. Coste, Gannon und Ruelle untersuchen diesen Darstellungsring. Sie stellen eine Reihe von wichtigen Fragen. Eine dieser Fragen beantworten wir, nämlich inwieweit rekonstruiert werden kann, zu welcher endlichen Gruppe gegebene Matrizen gehören. Den Darstellungsring des getwisteten Quantendoppels berechnen wir für viele Beispiele am Computer. Dazu müssen unter anderem Elemente aus der dritten Kohomologie-Gruppe H3(G,C×) explizit berechnet werden, was bisher anscheinend in noch keinem Computeralgebra-System implementiert wurde. Leider ergibt sich hierbei kein Zusammenhang zu den von Spetses herrührenden Matrizen. Die Werkzeuge, die in der Arbeit entwickelt werden, ermöglichen eine strukturelle Zerlegung der Z-Ringe mit Basis in bekannte Anteile. So können wir für die meisten Matrizen der Spetses Konstruktionen angeben: Die zugehörigen Z-Algebren sind Faktorringe von Tensorprodukten von affinen Ringe Charakterringen und von Darstellungsringen von Quantendoppeln.