990 resultados para Action positive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current concepts of the role of interspecific interactions in communities have been shaped by a profusion of experimental studies of interspecific competition over the past few decades. Evidence for the importance of positive interactions — facilitations — in community organization and dynamics has accrued to the point where it warrants formal inclusion into community ecology theory, as it has been in evolutionary biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding of 13 alkaloids to two GC-rich DNA duplexes which are critical sequences in human survivin promoter. Negative ion ESI-MS was first applied to screen the binding of the alkaloids to the duplexes. Six alkaloids (including berberine, jatrorrhizine, palmatine, reserpine, berbamine, and tetrandrine) show complexation with the target DNA sequences. Relative binding affinities were estimated from the negative ion ESI data, and the alkaloids show a binding preference to the duplex with higher GC content. Positive ion ESI mass spectra of the complexes were also recorded and compared with those obtained in negative ion mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of both organically modified montmorillonite (OMMT) and Ni2O3 on the carbonization of polypropylene (PP) during pyrolysis were investigated. The results from TEM and Raman spectroscopy showed that the carbonized products of PP were mainly multiwalled carbon nanotubes (MWNTs). Surprisingly, a combination of OMMT and Ni2O3 led to high-yield formation of MWNTs. X-ray powder diffraction (XRD) and GC-MS were used to investigate the mechanism of this combination for the high-yield formation of MWNTs from PP. Bronsted acid sites were created in degraded OMMT layers by thermal decomposition of the modifiers. The resultant carbenium ions play an important role in the carbonization of PP and the formation of MWNTs. The degradation of PP was induced by the presence of carbenium ions to form predominantly products with lower carbon numbers that could be easily catalyzed by the nickel catalyst for the growth of MWNTs. Furthermore, carbenium ions are active intermediates that promote the growth of MWNTs from the degradation products with higher carbon numbers through hydride-transfer reactions. The XRD measurements showed that Ni2O3 was reduced into metallic nickel (Ni) in situ to afford the active sites for the growth of MWNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) of oligosaccharides and polysaccharides has been investigated in detail, It is demonstrated that cationized species of oligosaccharides, [M+Na](+) and [M+K](+), are dominant products under the MALDI condition, and negative ions of oligosaccharides are not formed to any significant extent in this process, The molecular masses of polysaccharides are similarly determined by positive- and negative-ion MALDI-MS with the help of column chromatography. The distinction between positive- and negative-ion MALDI mass spectra of oligo-and polysaccharides indicates that the MALDI processes for saccharides vary with molecular mass. The matrix plays a more important role in the ionization process for oligosaccharides, while in the desorption process for polysaccharides. (C) 1998 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spinel, lithium intercalation compound LiMn2O4 is prepared and studied using the techniques of a.c. impedance and cyclic voltammetry. The impedance behaviour of the LiMn2O4 electrode varies as lithium ions are intercalated or de-intercalated. The reversible behaviour of lithium ions in the LiMn2O4 electrode is confirmed by the results of cyclic voltammetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The special action of TEO solution was investigated by 1D, 2D-NMR in CDCl3. For the present measurements, when the concentration of TEO was higher in CDCl3, the chemical shift difference (Delta delta) and the peak number of C-13 NMR spectrum were changed with increasing the solution concentration, At lower concentration(< 3% V/V ), the peaks will be closed together for -CH2O- resonance carbon and it is not the appearance of the narrowed, When temperature was changed, the Delta delta value was contrary to the solvent effect, So, the shifts of the resonance carbon in the NMR spectra indicated clearly that the complex formation for the system of CDCl3, and TEO molecular interaction were affected by the experiment temperature and the solution concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper. the interaction of tripositive terbium ions (Tb3+) with bovine serum albumin (BSA) has been investigated in the presence of some alkaline earth metals and citric acid (Cit) by using fluorescence spectroscopy. The results show that Tb-31. BSA and Cit can form ternary complex BSA . Tb-2. Cit(4) in mu =0.1 mol/l NaCl. pH6.3 hexamethylenetetramine buffer. Other tare earths are able to compete for the same binding site in BSA with Tb3+-. The sequence of con,petition is Eu3+>Pr3+>Yb3+>Gd3+>La3+>Ca2+ and Mg2+ cannot replace Tb bound to BSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding beta- and alpha-subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algalytic bacterium provisionally designated as TL1 was isolated from Tai Lake, a large freshwater lake in the Yangtze Delta plain on the border of the Jiangsu and Zhejiang provinces and close to Wuxi city in the People's Republic of China. Strain TL1 was identified as Achromobacter sp. based on its biophysical and biochemical properties and the analysis of its 16S rRNA sequence. Microcystis aeruginosa, which is the most common toxic cyanobacterium in eutrophic freshwater, could be decomposed by strain TL1. The results showed that after inoculation with the algalytic bacterium, the content of chlorophyll-a, maximum PSII quantum yield, and maximum electron transport rates of the alga decreased sharply. At first, the algal cells enhanced the activities of some antioxidative enzymes, but subsequently, the activities of antioxidative enzymes fell sharply once damage of the algal cells was achieved. The filtrate from strain TL1 culture suspension, after autoclaving and treatments with proteinase K, strongly inhibited algal growth, indicating that the lytic metabolites were extracellular and thermostable, not a protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.