981 resultados para Accumulation of nutrients
Resumo:
Photosynthesis, the process in which carbon dioxide is converted into sugars using the energy of sunlight, is vital for heterotrophic life on Earth. In plants, photosynthesis takes place in specific organelles called chloroplasts. During chloroplast biogenesis, light is a prerequisite for the development of functional photosynthetic structures. In addition to photosynthesis, a number of other metabolic processes such as nitrogen assimilation, the biosynthesis of fatty acids, amino acids, vitamins, and hormones are localized to plant chloroplasts. The biosynthetic pathways in chloroplasts are tightly regulated, and especially the reduction/oxidation (redox) signals play important roles in controlling many developmental and metabolic processes in chloroplasts. Thioredoxins are universal regulatory proteins that mediate redox signals in chloroplasts. They are able to modify the structure and function of their target proteins by reduction of disulfide bonds. Oxidized thioredoxins are restored via the action of thioredoxin reductases. Two thioredoxin reductase systems exist in plant chloroplasts, the NADPHdependent thioredoxin reductase C (NTRC) and ferredoxin-thioredoxin reductase (FTR). The ferredoxin-thioredoxin system that is linked to photosynthetic light reactions is involved in light-activation of chloroplast proteins. NADPH can be produced via both the photosynthetic electron transfer reactions in light, and in darkness via the pentose phosphate pathway. These different pathways of NADPH production enable the regulation of diverse metabolic pathways in chloroplasts by the NADPH-dependent thioredoxin system. In this thesis, the role of NADPH-dependent thioredoxin system in the redox-control of chloroplast development and metabolism was studied by characterization of Arabidopsis thaliana T-DNA insertion lines of NTRC gene (ntrc) and by identification of chloroplast proteins regulated by NTRC. The ntrc plants showed the strongest visible phenotypes when grown under short 8-h photoperiod. This indicates that i) chloroplast NADPH-dependent thioredoxin system is non-redundant to ferredoxinthioredoxin system and that ii) NTRC particularly controls the chloroplast processes that are easily imbalanced in daily light/dark rhythms with short day and long night. I identified four processes and the redox-regulated proteins therein that are potentially regulated by NTRC; i) chloroplast development, ii) starch biosynthesis, iii) aromatic amino acid biosynthesis and iv) detoxification of H2O2. Such regulation can be achieved directly by modulating the redox state of intramolecular or intermolecular disulfide bridges of enzymes, or by protecting enzymes from oxidation in conjunction with 2-cysteine peroxiredoxins. This thesis work also demonstrated that the enzymatic antioxidant systems in chloroplasts, ascorbate peroxidases, superoxide dismutase and NTRC-dependent 2-cysteine peroxiredoxins are tightly linked up to prevent the detrimental accumulation of reactive oxygen species in plants.
Resumo:
The objective of this work was to correlate data on light microscopy observations through histochemical analysis and polarized light techniques and investigations in transmission electron microscopy (TEM) to characterize the reserve materials in C. peltophoroides Benth. (Leguminosae-Caesalpinoideae) cotyledons, popularly known as "sibipiruna", a tropical tree species with wide distribution in Brazil. The cotyledon mesophyll, especially in the abaxial face, is rich in unsaturated neutral lipids contained in numerous lipid bodies dispersed in the cytoplasm. Proteins, more concentrated in the adaxial face of the cotyledons, occur in all the mesophyll and are stored in protein bodies containing globoids, with variable number and size, responsible for accumulation of mineral reserves. Calcium oxalate druses have distribution restricted to the cotyledons adaxial face and are associated with protein bodies. Starch, also distributed all over the cotyledon mesophyll, occurs in small amounts in plastids with developed lamellar system. Secretory cavities rich in phenolic compounds occur among procambial strands.
Resumo:
Ecophysiological studies under semi-controlled conditions in nurseries and greenhouses are essential to enable the use of native species to recover degraded areas and for commercial planting. Talisia subalbens (Mart) Radlk, 'cascudo', is a native fruiting species of the Cerrado on the verge of extinction. The ecophysiological performance of this species was evaluated in nursery conditions under different levels of shading (full sunshine, 30%, 50% and 70%). Initial growth, biomass allocation, gas exchange and chlorophyll content of the plants were analyzed. Full sunshine cultivated plants showed a higher accumulation of total, shoot, and root dry biomass. There was no significant difference in the root/shoot ratio among the treatments. Seedlings cultivated under full sunshine and 30% shading showed higher values for height, basal diameter, and leaf area. Differences in stomata conductance and photosynthesis rate were not observed among the different shading levels. Plants cultivated under 70% of shading had higher contents of chlorophyll a, b, and total. During the initial phase with higher levels of radiation were fundamental for the development of T. subalbens seedlings.
Resumo:
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy(CADASIL) is the most common hereditary small vessel disease (SVD) leading to vascular dementia. The cause of the disease is mutations in NOTCH3 gene located at chromosome 19p13.1. The gene defect results in accumulation of granular osmiophilic material and extracellular domain of NOTCH3 at vascular smooth muscle cells (VSMCs) with subsequent degeneration of VSMCs. This arteriopathy leads to white matter (WM) rarefaction and multiple lacunar infarctions in both WM and deep grey matter (GM) visible in magnetic resonance imaging. This thesis is focused on the quantitative morphometric analysis of the stenosis and fibrosis in arterioles of the frontal cerebral WM, cortical GM and deep GM (lenticular nucleus (LN), i.e. putamen and globus pallidus). It was performed by assessing four indicators of arteriolar stenosis and fibrosis: (1) diameter of arteriolar lumen, (2) thickness of arteriolar wall, (3) external diameter of arterioles and (4) sclerotic index. These parameters were assessed (a) in 5 elderly CADASIL patients with the mean age of onset 47 years and of death 63 years, (b) in a 32-year-old young CADASIL patient with the first ischemic episode at the age of 29 years and (c) a very old CADASIL patient aged 95 years, who suffered the first stroke at the age of 71 years. These measurements were compared with age-matched controls without stroke, dementia, hypertension, and cerebral amyloid angiopathy. Morphometric analyses disclosed that in all age groups of CADASIL patients compared to corresponding controls there was significant narrowing of arteriolar lumen (stenosis) and fibrotic thickening of the walls (fibrosis) in the WM arterioles, although the significance of stenosis in the very old patient was marginal. In the LN arterioles there was only significant fibrosis without stenosis. These results suggest that the ischemic lesions and lacunar infarcts in the cerebral WM are mainly attributable to the stenosis of arterioles, whereas those in the LN are probably mainly due to hemodynamic changes of the cerebral blood flow. In conclusion: The SVD of CADASIL is characterized by narrowing of lumina and fibrotic thickening of walls predominantly in the cerebral WM arterioles. On the other hand, in the LN the ischemic lesions and lacunar infarcts are most probably hemodynamic due to impaired autoregulation caused by the rigidity of fibrotic arterioles. The pathological cerebral arteriolar alterations begin to develop already at a relatively young age but the onset may be delayed to a remarkably old age. This underlines the well known great variability in the clinical picture of CADASIL. The very late onset of CADASIL may cause its underdiagnosis, because the strokes are common in the elderly and are attributed to common risk factors.
Resumo:
This study evaluated establishment methods for a mixture of herbaceous forage legumes [Centrosema acutifolium, Clitoria ternatea, Pueraria phaseoloides, Stylosanthes Campo Grande (Stylosanthes capitata + S. macrocephala), Calopogonium mucunoides, Lablab purpureus, Arachis pintoi, and Aeschynomene villosa] under the shade of an Eucalyptus grandis plantation submitted to thinning (40%) 8 years after planting in Anhembi, São Paulo (22°40'S, 48°10'W, altitude of 455 m). The experiment started in December 2008 and consisted of the comparison of the following four types of seed incorporation by light disc harrowing: (1) broadcast sowing without seed incorporation; disc harrowing before (2) or after (3) planting, and (4) disc harrowing before and after planting. Ninety days after planting, the number of legume plants/m2 and the percentage of ground cover by the plants varied between the treatments tested; however, the treatments had no effect on the dry matter accumulation of forage legumes. Disc harrowing before planting yielded superior results compared to the treatments without disc harrowing and disc harrowing after planting. At the end of the experimental period, the plots contained Arachis, Centrosema, Stylosanthes, and Pueraria. The dry matter accumulated by Centrosema corresponded to 73% of total dry matter yield of the plots. The participation of Arachis, Centrosema and Stylosanthes in final dry matter composition of the plots varied according to establishment method. The advantages of the use of species mixtures rather than monocultures in the understory of forest plantations were discussed.
Resumo:
A sequential batch reactor with suspended biomass and useful volume of 5 L was used in the removal of nutrients and organic matter in workbench scale under optimal conditions obtained by central composite rotational design (CCRD), with cycle time (CT) of 16 h (10.15 h, aerobic phase, and 4.35 h, anoxic phase) and carbon: nitrogen ratio (COD/NO2--N+NO3--N) equal to 6. Complete cycles (20), nitrification followed by denitrification, were evaluated to investigate the kinetic behavior of degradation of organic (COD) and nitrogenated (NH4+-N, NO2--N and NO3--N) matter present in the effluent from a bird slaughterhouse and industrial processing facility, as well as to evaluate the stability of the reactor using Shewhart control charts of individual measures. The results indicate means total inorganic nitrogen (NH4+-N+NO2- -N+NO3--N) removal of 84.32±1.59% and organic matter (COD) of 53.65±8.48% in the complete process (nitrification-denitrification) with the process under statistical control. The nitrifying activity during the aerobic phase estimated from the determination of the kinetic parameters had mean K1 and K2 values of 0.00381±0.00043 min-1 and 0.00381±0.00043 min-1, respectively. The evaluation of the kinetic behavior of the conversion of nitrogen indicated a possible reduction of CT in the anoxic phase, since removals of NO2--N and NO3--N higher than 90% were obtained with only 1 h of denitrification.
Resumo:
Dryers heated by solar energy have been constructed and used in drying whole and half jack fruit almonds. The samples were dried during the day in direct sun and in the conventional solar dryer prepared for this purpose. Another piece of equipment was built for reception and accumulation of sun energy in a body of water, which was used as a heat source for night drying. The drying with the sun energy was compared with artificial drying. The jack fruit almonds were dried whole, half, with pellicle and without it. The storage of solar energy in water was technically viable for use in night drying. The drying by combining solar dryers in the day and night periods were completed in approximately 35 hours, and were equivalent to artificial drying between 40ºC and 70ºC. Almond cut in half and the pellicle removed reduced the drying time.
Resumo:
The objective of this study was to evaluate the quality and the production of biogas and biofertilizer obtained from biodigester supplied with pig feces in the initial, growing and finishing stages, fed with diets formulated based on corn or sorghum. Twenty bench biodigesters were used with hydraulic retention time of 30 days and daily loads that contained 4 to 6% of total solids (TS) and 3.6 to 5.2% of volatile solids (VS). In the effluent of the biodigesters, mean levels of TS were observed ranging between 1.6 and 2.0% and of VS between 1.2 and 1.6%. The mean reductions of TS were 57.7 to 64.7% and of VS from 61.7 to 69.0%, and there was only difference in the finishing phase, in which the major averages reductions were produced by the biodigesters supplied with feces from animals fed with diets based on corn. In biodigesters supplied with feces from animals in the initial and growing stages fed with diets based on corn, were observed higher average productions of biogas and the greatest average potentials of biogas production. The average potentials obtained were 0.033; 0.181; 0.685; 0.788 and 1.132 m³ per kg of affluent, manure, TS added, VS added and VS reduced, respectively. No differences were found on the average content of methane in the biogas between diets and stages. The average concentrations of nutrients N, P, K, Ca, Mg, Na, Fe, Mn, Zn and Cu in the biodigester affluent and effluent, ranged between diets and stages.
Resumo:
The use of no tillage system associated with the crop-livestock integration is an alternate managing that promotes the accumulation of dry matter in the soil, an essential fact to make the system sustainable and profitable. The aim of this study was to evaluate the operational performance of a planter-tractor set on maize straws intercropped with Urochloa, in different seeding modes. The soybean crop was seed on the intercropping of two forage species (Urochloa brizantha and Urochloa ruziziensis) in five cropping systems: MBL (Maize with Urochloa in the maize seeding row, mixed with base fertilizer and deposited at 0.10 m), MBE (Maize with Urochloa seeded between rows at the same day of seeding maize), MBC (Urochloa between rows of maize seeded with the covering fertilizer at the V4 stage), MBLA (Maize with Urochloa by broadcast seeding at the V4 stage ) and MS (Single Maize: control). The following variables were evaluated: dry mass of maize straw, dry mass of forages and total dry mass of straw; and for the operational parameters the speed of seeding, wheel slippage, traction force and average power at the drawbar. The results showed that the amount of straw produced by maize intercropping with Urochloa, interferes in the operational performance of the tractor-planter at the operation of soybean seeding, i.e., areas with higher amount of straw promote greater energy demand, as well as higher wheel slippage.
Resumo:
The management of composting may influence the characteristics of the produced compounds. The experiment used three frequencies of plowing, combined with the conditions: with and without coverage of the composting patio, with and without the use of commercial inoculant, resulting in 12 furrows, installed on the Experimental Center of Agricultural Engineering (NEEA), of the STATE UNIVERSITY OF WEST PARANÁ (UNIOESTE), Campus of Cascavel city - state of Paraná (PR), in Brazil. The waste and quantities used in kg were: corn cob (7.5); hatchery residue (5); floater sludge (31); ash (1); wheat cleaning residue (120); wheat pre-cleaning residue (120); corn peel (7.5); solid fraction of wash trucks used to transport chickens (2); solid fraction of pig manure (1) and coal (5), totaling 300kg of natural matter. The aim of this study was to evaluate the influence of plowings, patio coverage and inoculation in losses of N, P, K, Ca, Mg, Na, Cu, Zn, Mn, Fe. The furrows plowed three times a week in the first month showed significant higher losses of N (p<0.05). The coverage of the composting patio influenced significantly the losses of N, K, Mg and Na (p<0.05). The produced compounds had a high agronomic value in relation to macro and micronutrients. It is recommended the use of patio coverage and plowing twice a week in the first month and once a week in the subsequent months for a compound with higher concentrations of nutrients.
Resumo:
Human embryonic stem cells are pluripotent cells capable of renewing themselves and differentiating to specialized cell types. Because of their unique regenerative potential, pluripotent cells offer new opportunities for disease modeling, development of regenerative therapies, and treating diseases. Before pluripotent cells can be used in any therapeutic applications, there are numerous challenges to overcome. For instance, the key regulators of pluripotency need to be clarified. In addition, long term culture of pluripotent cells is associated with the accumulation of karyotypic abnormalities, which is a concern regarding the safe use of the cells for therapeutic purposes. The goal of the work presented in this thesis was to identify new factors involved in the maintenance of pluripotency, and to further characterize molecular mechanisms of selected candidate genes. Furthermore, we aimed to set up a new method for analyzing genomic integrity of pluripotent cells. The experimental design applied in this study involved a wide range of molecular biology, genome-wide, and computational techniques to study the pluripotency of stem cells and the functions of the target genes. In collaboration with instrument and reagent company Perkin Elmer, KaryoliteTM BoBsTM was implemented for detecting karyotypic changes of pluripotent cells. Novel genes were identified that are highly and specifically expressed in hES cells. Of these genes, L1TD1 and POLR3G were chosen for further investigation. The results revealed that both of these factors are vital for the maintenance of pluripotency and self-renewal of the hESCs. KaryoliteTM BoBsTM was validated as a novel method to detect karyotypic abnormalities in pluripotent stem cells. The results presented in this thesis offer significant new information on the regulatory networks associated with pluripotency. The results will facilitate in understanding developmental and cancer biology, as well as creating stem cell based applications. KaryoliteTM BoBsTM provides rapid, high-throughput, and cost-efficient tool for screening of human pluripotent cell cultures.
Resumo:
The study evaluates the potential application of chemical substances, obtained from biogas plants` by-products. Through the anaerobic digestion process with biogas the large amount of digestate is produced. This digestate mainly consists on the organic matter with the high concentration of nutrients such as nitrogen and phosphorus. During ammonia stripping and phosphorus precipitation the products- ammonia water, ammonium sulfate, ammonium nitrate, ferrous phosphate, aluminum phosphate, calcium phosphate and struvite can be recovered. These chemicals have potential application in different industrial sectors. According to Finnish market and chemicals properties, the most perspective industrial applications were determined. Based on the data, obtained through the literature review and market study, the ammonia water was recognized as a most perspective recovered substances. According to interview provided among Finnish companies, ammonia water is used for flue gas treatment in SNCR technology. This application has a large scale in the framework of Finnish industrial sectors. As well nitrogen with phosphorous can be used as a source of nutrients in the biological wastewater treatment plants of paper mills.
Resumo:
A Petri dish assay was carried out for screening different concentrations of aqueous extracts of fresh and dry leaves of Eucalyptus citriodora on germination and seedling growth of wild oat weed (Avena fatua). Seed germination, root and shoot length of wild oat exhibited different degrees of inhibition according to the concentration of the aqueous extract. Maximum inhibitions of germination percentage, root and shoot length were recorded when using 25% fresh leaf extract. Based on this preliminary work (Petri dish assay), studies were conducted under greenhouse conditions at the National Research Center, Egypt, in the two winter seasons of 2006/2007 and 2007/2008 to evaluate the effects of foliar and soil treatments of aqueous extracts of Eucalyptus citriodora fresh and dry leaves on wild oat weed as well as on the growth and flowering of amaryllis (Hippeastrum hybridum), compared with the recommended dose of the herbicide tralkoxydim. Amaryllis fresh and dry weights as well as flowering increased significantly when treated with the previous extracts, especially the fresh leaf extract. However, the fresh and dry weights of wild oat were significantly reduced by the aqueous extracts, either fresh or dry, indicating phytotoxic effects. Tralkoxydim caused complete inhibition of wild oat as compared with the control. The studies involved estimation of the endogenous contents of total phenols in weed. With all the treatments, the inhibitory effects on weeds were correlated with accumulation of the internal contents of total phenols, compared to their respective controls. The amount of phenols correlated well with the weed's growth performance. This study establishes the effect of the aqueous extracts on the weed wild oat, associated with amaryllis, which may serve as a tool in establishing their herbicidal potential.
Resumo:
Several degraded areas can be found along the Highway MG-010 that crosses the Espinhaço Mountain Biosphere Reserve in the Brazilian state of Minas Gerais. Restoration by planting the legume Cajanus cajan was implemented in some of these areas. The present study compares plant species richness, diversity, abundance, equitability, similarity, and soil composition between restored and non-restored areas, in an attempt to evaluate the effectiveness of the use of C. cajan in the restoration process in the mountain environment. Each treatment (restored and non-restored) had four sampling areas, each with three 300 m² plots. We counted and identified every individual plant found within these plots. We also collected soil from the superficial layer (0-10 cm) of each sampling area in both treatments. The areas where C. cajan was planted revealed lower species richness, diversity, and plant abundance. The soil of these areas also contained higher levels of Phosphorus and Magnesium. Plant equitability and similarity between plots and other soil components (pH, Nitrogen, Aluminum, Calcium, Potassium, H+Al, sum of bases - SB, cation exchange capacity - CTC, base saturation - V%, aluminum saturation - M%) did not differ between the two treatments. Contrary to the expectations, soil enhancement in the quartzitic soil poor in nutrients in the rupestrian fields can facilitate the invasion by exotic plants, which are not adapted to the lack of nutrients. As it appears, the use of C. cajan in restoration projects represents a mistake and future restoration plans should avoid the use of exotic species, given that they may cause negative effects on the native plant community, as demonstrated here in the rupestrian fields.
Characterization of Leaf-Type Ferredoxin-NADP+ Oxidoreductase (FNR) Isoforms in Arabidopsis thaliana
Resumo:
Life on earth is based on sunlight, which is captured in chemical form by photosynthetic reactions. In the chloroplasts of plants, light reactions of photosynthesis take place at thylakoid membranes, whereas carbon assimilation reactions occur in the soluble stroma. The products of linear electron transfer (LET), highly-energetic ATP molecules, and reducing power in the form of NADPH molecules, are further used in the fixation of inorganic CO2 molecules into organic sugars. Ferredoxin-NADP+ oxidoreductase (FNR) catalyzes the last of the light reactions by transferring electrons from ferredoxin (FD) to NADP+. In addition to LET, FNR has been suggested to play a role in cyclic electron transfer (CET), which produces ATP without the accumulation of reducing equivalents. CET is proposed to occur via two putative routes, the PGR5- route and the NDH-route. In this thesis, the leaf-type FNR (LFNR) isoforms LFNR1 and LFNR2 of a model organism, Arabidopsis thaliana, were characterized. The physiological roles of LFNRs were investigated using single and double mutant plants. The viability of the single mutants indicates functionality of both isoforms, with neither appearing to play a specific role in CET. The more severe phenotype of low-temperature adapted fnr2 plants compared to both wild-type (WT) and fnr1 plants suggests a specific role for LFNR2 under unfavorable growth conditions. The more severe phenotype of the fnr1 x fnr2 (F1 generation) plants compared to single mutants reflects down-regulated photosynthetic capacity, whereas slightly higher excitation pressure indicates mild over-excitation of electron transfer chain (ETC). However, induction of CET and various photoprotective mechanisms enable adaptation of fnr1 x fnr2 plants to scarcity of LFNR. The fnr1 fnr2 plants (F2 generation), without detectable levels of LFNR, were viable only under heterotrophic conditions. Moreover, drought stress induced acceleration of the rate of P700 + re-reduction in darkness was accompanied by a concomitant up-regulation of the PGR5-route specific components, PGR5 and PGRL1, demonstrating the induction of CET via the PGR5-route. The up-regulation of relative transcriptional expression of the FD1 gene indicates that the FD1 isoform may have a specific function in CET, while no such role could be defined for either of the LFNR isoforms. Both the membrane-bound and soluble LFNR1 and LFNR2 each appear as two distinct spots after 2D-PAGE with different isoelectric points (pIs), indicating the existence of post-translational modifications (PTMs) which do not determine the membrane attachment of LFNR. The possibility of phosphorylation and glycosylation PTMs were excluded, but all four LFNR forms were shown to contain acetylated lysine residues as well as alternative N-termini. N-terminal acetylation was shown to shift the pI of both LFNRs to be more acidic. In addition, all four LFNR forms were demonstrated to interact both with FD1 and FD2 in vitro