912 resultados para ANGLE
Resumo:
The effects of tumour motion during radiation therapy delivery have been widely investigated. Motion effects have become increasingly important with the introduction of dynamic radiotherapy delivery modalities such as enhanced dynamic wedges (EDWs) and intensity modulated radiation therapy (IMRT) where a dynamically collimated radiation beam is delivered to the moving target, resulting in dose blurring and interplay effects which are a consequence of the combined tumor and beam motion. Prior to this work, reported studies on the EDW based interplay effects have been restricted to the use of experimental methods for assessing single-field non-fractionated treatments. In this work, the interplay effects have been investigated for EDW treatments. Single and multiple field treatments have been studied using experimental and Monte Carlo (MC) methods. Initially this work experimentally studies interplay effects for single-field non-fractionated EDW treatments, using radiation dosimetry systems placed on a sinusoidaly moving platform. A number of wedge angles (60º, 45º and 15º), field sizes (20 × 20, 10 × 10 and 5 × 5 cm2), amplitudes (10-40 mm in step of 10 mm) and periods (2 s, 3 s, 4.5 s and 6 s) of tumor motion are analysed (using gamma analysis) for parallel and perpendicular motions (where the tumor and jaw motions are either parallel or perpendicular to each other). For parallel motion it was found that both the amplitude and period of tumor motion affect the interplay, this becomes more prominent where the collimator tumor speeds become identical. For perpendicular motion the amplitude of tumor motion is the dominant factor where as varying the period of tumor motion has no observable effect on the dose distribution. The wedge angle results suggest that the use of a large wedge angle generates greater dose variation for both parallel and perpendicular motions. The use of small field size with a large tumor motion results in the loss of wedged dose distribution for both parallel and perpendicular motion. From these single field measurements a motion amplitude and period have been identified which show the poorest agreement between the target motion and dynamic delivery and these are used as the „worst case motion parameters.. The experimental work is then extended to multiple-field fractionated treatments. Here a number of pre-existing, multiple–field, wedged lung plans are delivered to the radiation dosimetry systems, employing the worst case motion parameters. Moreover a four field EDW lung plan (using a 4D CT data set) is delivered to the IMRT quality control phantom with dummy tumor insert over four fractions using the worst case parameters i.e. 40 mm amplitude and 6 s period values. The analysis of the film doses using gamma analysis at 3%-3mm indicate the non averaging of the interplay effects for this particular study with a gamma pass rate of 49%. To enable Monte Carlo modelling of the problem, the DYNJAWS component module (CM) of the BEAMnrc user code is validated and automated. DYNJAWS has been recently introduced to model the dynamic wedges. DYNJAWS is therefore commissioned for 6 MV and 10 MV photon energies. It is shown that this CM can accurately model the EDWs for a number of wedge angles and field sizes. The dynamic and step and shoot modes of the CM are compared for their accuracy in modelling the EDW. It is shown that dynamic mode is more accurate. An automation of the DYNJAWS specific input file has been carried out. This file specifies the probability of selection of a subfield and the respective jaw coordinates. This automation simplifies the generation of the BEAMnrc input files for DYNJAWS. The DYNJAWS commissioned model is then used to study multiple field EDW treatments using MC methods. The 4D CT data of an IMRT phantom with the dummy tumor is used to produce a set of Monte Carlo simulation phantoms, onto which the delivery of single field and multiple field EDW treatments is simulated. A number of static and motion multiple field EDW plans have been simulated. The comparison of dose volume histograms (DVHs) and gamma volume histograms (GVHs) for four field EDW treatments (where the collimator and patient motion is in the same direction) using small (15º) and large wedge angles (60º) indicates a greater mismatch between the static and motion cases for the large wedge angle. Finally, to use gel dosimetry as a validation tool, a new technique called the „zero-scan method. is developed for reading the gel dosimeters with x-ray computed tomography (CT). It has been shown that multiple scans of a gel dosimeter (in this case 360 scans) can be used to reconstruct a zero scan image. This zero scan image has a similar precision to an image obtained by averaging the CT images, without the additional dose delivered by the CT scans. In this investigation the interplay effects have been studied for single and multiple field fractionated EDW treatments using experimental and Monte Carlo methods. For using the Monte Carlo methods the DYNJAWS component module of the BEAMnrc code has been validated and automated and further used to study the interplay for multiple field EDW treatments. Zero-scan method, a new gel dosimetry readout technique has been developed for reading the gel images using x-ray CT without losing the precision and accuracy.
Resumo:
Background: Adolescent idiopathic scoliosis is a complex three-dimensional deformity, involving a lateral deformity in the coronal plane and axial rotation of the vertebrae in the transverse plane. Gravitational loading plays an important biomechanical role in governing the coronal deformity, however, less is known about how they influence the axial deformity. This study investigates the change in three-dimensional deformity of a series of scoliosis patients due to compressive axial loading. Methods: Magnetic resonance imaging scans were obtained and coronal deformity (measured using the coronal Cobb angle) and axial rotations measured for a group of 18 scoliosis patients (Mean major Cobb angle was 43.4 o). Each patient was scanned in an unloaded and loaded condition while compressive loads equivalent to 50% body mass were applied using a custom developed compressive device. Findings: The mean increase in major Cobb angle due to compressive loading was 7.4 o (SD 3.5 o). The most axially rotated vertebra was observed at the apex of the structural curve and the largest average intravertebral rotations were observed toward the limits of the coronal deformity. A level-wise comparison showed no significant difference between the average loaded and unloaded vertebral axial rotations (intra-observer error = 2.56 o) or intravertebral rotations at each spinal level. Interpretation: This study suggests that the biomechanical effects of axial loading primarily influence the coronal deformity, with no significant change in vertebral axial rotation or intravertebral rotation observed between the unloaded and loaded condition. However, the magnitude of changes in vertebral rotation with compressive loading may have been too small to detect given the resolution of the current technique.
Resumo:
The structures of the cyclic imides cis-2-(2-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C14H14FNO2, (I), and cis-2-(4-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindoline-1,3-dione, C14H14FNO2, (III), and the open-chain amide acid rac-cis-2-[(3-fluorophenyl)carbamoyl]cyclohexane-1-carboxylic acid, C14H16FNO3, (II), are reported. Cyclic imides (I) and (III) are conformationally similar, with comparable ring rotations about the imide N-Car bond [the dihedral angles between the benzene ring and the five-membered isoindole ring are 55.40 (8)° for (I) and 51.83 (7)° for (III)]. There are no formal intermolecular hydrogen bonds involved in the crystal packing of either (I) or (III). With the acid (II), in which the meta-related F-atom substituent is rotationally disordered (0.784:0.216), the amide group lies slightly out of the benzene plane [the interplanar dihedral angle is 39.7 (1)°]. Intermolecular amide-carboxyl N-HO hydrogen-bonding interactions between centrosymmetrically related molecules form stacks extending down b, and these are linked across c by carboxyl-amide O-HO hydrogen bonds, giving two-dimensional layered structures which lie in the (011) plane. The structures reported here represent examples of compounds analogous to the phthalimides or phthalanilic acids and have little precedence in the crystallographic literature.
Resumo:
Distraction whilst driving on an approach to a signalized intersection is particularly dangerous, as potential vehicular conflicts and resulting angle collisions tend to be severe. This study examines the decisions of distracted drivers during the onset of amber lights. Driving simulator data were obtained from a sample of 58 drivers under baseline and handheld mobile phone conditions at the University of IOWA - National Advanced Driving Simulator. Explanatory variables include age, gender, cell phone use, distance to stop-line, and speed. An iterative combination of decision tree and logistic regression analyses are employed to identify main effects, non-linearities, and interactions effects. Results show that novice (16-17 years) and younger (18-25 years) drivers’ had heightened amber light running risk while distracted by cell phone, and speed and distance thresholds yielded significant interaction effects. Driver experience captured by age has a multiplicative effect with distraction, making the combined effect of being inexperienced and distracted particularly risky. Solutions are needed to combat the use of mobile phones whilst driving.
Resumo:
This work is a theoretical investigation into the coupling of a single excited quantum emitter to the plasmon mode of a V groove waveguide. The V groove waveguide consists of a triangular channel milled in gold and the emitter is modeled as a dipole emitter, and could represent a quantum dot, nitrogen vacancy in diamond, or similar. In this work the dependence of coupling efficiency of emitter to plasmon mode is determined for various geometrical parameters of the emitter-waveguide system. Using the finite element method, the effect on coupling efficiency of the emitter position and orientation, groove angle, groove depth, and tip radius, is studied in detail. We demonstrate that all parameters, with the exception of groove depth, have a significant impact on the attainable coupling efficiency. Understanding the effect of various geometrical parameters on the coupling between emitters and the plasmonic mode of the waveguide is essential for the design and optimization of quantum dot–V groove devices.
Resumo:
This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
In the structure of the title compound C14H9Cl3I2, which is the p-iodophenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], isomorphism between the two compounds has been confirmed. In the molecule the dihedral angle between the planes of the two phenyl rings is 65.8(4)deg. which compares with 64.7(7)deg. in DDT.
Resumo:
In the structure of the title compound C22H27Cl302, which is the p-butoxyphenyl analogue of the insecticidally active p-methoxyphenyl compound methoxychlor, the dihedral angle between the two phenyl rings is 79.61(11)deg. Present also in the structure is an intramolecular aromatic C-H...Cl interaction [3.361(2)Ang].
Resumo:
Objective Factors associated with the development of hallux valgus (HV) are multifactorial and remain unclear. The objective of this systematic review and meta-analysis was to investigate characteristics of foot structure and footwear associated with HV. Design Electronic databases (Medline, Embase, and CINAHL) were searched to December 2010. Cross-sectional studies with a valid definition of HV and a non-HV comparison group were included. Two independent investigators quality rated all included papers. Effect sizes and 95% confidence intervals (CIs) were calculated (standardized mean differences (SMDs) for continuous data and risk ratios (RRs) for dichotomous data). Where studies were homogeneous, pooling of SMDs was conducted using random effects models. Results A total of 37 papers (34 unique studies) were quality rated. After exclusion of studies without reported measurement reliability for associated factors, data were extracted and analysed from 16 studies reporting results for 45 different factors. Significant factors included: greater first intermetatarsal angle (pooled SMD = 1.5, CI: 0.88–2.1), longer first metatarsal (pooled SMD = 1.0, CI: 0.48–1.6), round first metatarsal head (RR: 3.1–5.4), and lateral sesamoid displacement (RR: 5.1–5.5). Results for clinical factors (e.g., first ray mobility, pes planus, footwear) were less conclusive regarding their association with HV. Conclusions Although conclusions regarding causality cannot be made from cross-sectional studies, this systematic review highlights important factors to monitor in HV assessment and management. Further studies with rigorous methodology are warranted to investigate clinical factors associated with HV.
Resumo:
Background. Vertebral rotation found in structural scoliosis contributes to trunkal asymmetry which is commonly measured with a simple Scoliometer device on a patient's thorax in the forward flexed position. The new generation of mobile 'smartphones' have an integrated accelerometer, making accurate angle measurement possible, which provides a potentially useful clinical tool for assessing rib hump deformity. This study aimed to compare rib hump angle measurements performed using a Smartphone and traditional Scoliometer on a set of plaster torsos representing the range of torsional deformities seen in clinical practice. Methods. Nine observers measured the rib hump found on eight plaster torsos moulded from scoliosis patients with both a Scoliometer and an Apple iPhone on separate occasions. Each observer repeated the measurements at least a week after the original measurements, and were blinded to previous results. Intra-observer reliability and inter-observer reliability were analysed using the method of Bland and Altman and 95% confidence intervals were calculated. The Intra-Class Correlation Coefficients (ICC) were calculated for repeated measurements of each of the eight plaster torso moulds by the nine observers. Results. Mean absolute difference between pairs of iPhone/Scoliometer measurements was 2.1 degrees, with a small (1 degrees) bias toward higher rib hump angles with the iPhone. 95% confidence intervals for intra-observer variability were +/- 1.8 degrees (Scoliometer) and +/- 3.2 degrees (iPhone). 95% confidence intervals for inter-observer variability were +/- 4.9 degrees (iPhone) and +/- 3.8 degrees (Scoliometer). The measurement errors and confidence intervals found were similar to or better than the range of previously published thoracic rib hump measurement studies. Conclusions. The iPhone is a clinically equivalent rib hump measurement tool to the Scoliometer in spinal deformity patients. The novel use of plaster torsos as rib hump models avoids the variables of patient fatigue and discomfort, inconsistent positioning and deformity progression using human subjects in a single or multiple measurement sessions.
Resumo:
Study Design. Analysis of a case series of 24 Lenke 1C adolescent idiopathic scoliosis (AIS) patients receiving selective thoracoscopic anterior scoliosis correction. Objective. To report the behaviour of the compensatory lumbar curve in a group of Lenke IC AIS patients following thoracoscopic anterior scoliosis correction, and to compare the results of this study with previously published data. Summary of Background Data. Several prior studies have reported spontaneous lumbar curve correction for both anterior and posterior selective fusion in Lenke 1C/King-Moe II patients; however to our knowledge no previous studies have reported outcomes of thoracoscopic anterior correction for this curve type. Methods. All AIS patients with a curve classification of Lenke 1C and a minimum of 24 months follow-up were retrieved from a consecutive series of 190 AIS patients who underwent thoracoscopic anterior instrumented fusion. Cobb angles of the major curve, instrumented levels, compensatory lumbar curve, and T5-T12 kyphosis were recorded, as well as coronal spinal balance, T1 tilt angle and shoulder balance. All radiographic parameters were measured before surgery and at 2, 6, 12 and 24 months after surgery. Results. Twenty-four female patients with right thoracic curves had a mean thoracic Cobb angle of 53.0° before surgery, decreasing to 24.9° two years after surgery. The mean lumbar compensatory Cobb angle was 43.5° before surgery, spontaneously correcting to 25.4° two years after surgery, indicating balance between the thoracic and lumbar scoliotic curves. The lumbar correction achieved (41.8%) compares favourably to previous studies. Conclusions. Selective thoracoscopic anterior fusion allows spontaneous lumbar curve correction and achieves coronal balance of main thoracic and compensatory lumbar curves, good cosmesis and patient satisfaction. Correction and balance are maintained 24 months after surgery.
Resumo:
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.
Resumo:
This paper presents an approach for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera’s optical center and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. Previous methods for auto-calibration of cameras based on pure rotations fail to work in these two degenerate cases. In addition, our approach includes a modified RANdom SAmple Consensus (RANSAC) algorithm, as well as improved integration of the radial distortion coefficient in the computation of inter-image homographies. We show that these modifications are able to increase the overall efficiency, reliability and accuracy of the homography computation and calibration procedure using both synthetic and real image sequences