900 resultados para AMPHIURA-FILIFORMIS ECHINODERMATA
Resumo:
Among the Siberian shelf seas the Kara Sea is most strongly influenced by riverine runoff with nearly 1500 km fresh water discharge per year. This fresh water, discharged mainly by Ob and Yenisei, contains about 3.1 * 106 and 4.6 * 106 tons of total organic carbon per year, respectively (Gordeev et al. 1996). Little is known about the relevance of this organic material for biological communities, neither for the Kara Sea nor for the adjacent deep basins of the central Arctic Ocean. Aiming at elucidating the fate of fluvial matter transported from the rivers via estuaries into the central Arctic Ocean and the relative importance of marine organic matter being produced such information is crucial. Here we present calculations on the organic carbon demand of the Kara Sea macrozoobenthos based on measured biomass (total wet weight [ww] per 0.25 m ) from quantitative box corer samples and empirical relationships between biomass, annual production, annual respiration, and carbon remineralisation. This bottom-up approach may serve as a first estimate of the carbon remineralization potential of a given zoobenthos community (or area) as long as no data on in situ respiration rates are available. Our data basis comprises 54 stations sampled in summer seasons 1997, 1999 and 2000 in the Kara Sea at water depths between 10 and 68 m. The geographical area represented by stations analysed covers roughly 178 000 km**2, which is about one fifth of the total Kara Sea area. In this area, 290 species of invertebrate macrozoobenthos were identified with polychaeta, Crustacea, mollusca and echinodermata being the most abundant. For all stations analysed, mean biomass values ranged between 4.3 and 778.1 g ww/m**2 with organic carbon demands between 3.5 and 43.2 mg C/m**2/d. For the area of 178 000 km2 a preliminary total consumption of 1.4 * 10**6t Corg/y (equivalent to 21.5 mg C/m**2/d) was calculated for the macrozoobenthos. An extrapolation of our data would lead to an annual carbon demand of about 5-7 * 106 t for the whole Kara Sea macrozoobenthos (or 15.5-21.7 mg C/m2/d).
Resumo:
Ocean acidification, as a result of increased atmospheric CO2, has the potential to adversely affect the larval stages of many marine organisms and hence have profound effects on marine ecosystems. This is the first study of its kind to investigate the effects of ocean acidification on the early life-history stages of three echinoderms species, two asteroids and one irregular echinoid. Potential latitudinal variations on the effects of ocean acidification were also investigated by selecting a polar species (Odontaster validus), a temperate species (Patiriella regularis), and a tropical species (Arachnoides placenta). The effects of reduced seawater pH levels on the fertilization of gametes, larval survival and morphometrics on the aforementioned species were evaluated under experimental conditions. The pH levels considered for this research include ambient seawater (pH 8.1 or pH 8.2), levels predicted for 2100 (pH 7.7 and pH 7.6) and the extreme pH of 7.0, adjusted by bubbling CO2 gas into filtered seawater. Fertilization for Odontaster validus and Patiriella regularis for the predicted scenarios for 2100 was robust, whereas fertilization was significantly reduced in Arachnoides placenta. Larval survival was robust for the three species at pH 7.8, but numbers declined when pH dropped below 7.6. Normal A. placenta larvae developed in pH 7.8, whereas smaller larvae were observed for O. validus and P. regularis under the same pH treatment. Seawater pH levels below 7.6 resulted in smaller and underdeveloped larvae for all three species. The greatest effects were expected for the Antarctic asteroid O. validus but overall the tropical sand dollar A. placenta was the most affected by the reduction in seawater pH. The effects of ocean acidification on the asteroids O. validus and P. regulars, and the sand dollar A. placenta are species-specific. Several parameters, such as taxonomic differences, physiology, genetic makeup and the population's evolutionary history may have contributed to this variability. This study highlights the vulnerability of the early developmental stages and the complexity of ocean acidification. However, future research is needed to understand the effects at individual, community and ecosystem levels.
Resumo:
With the growing pressure of eutrophication in tropical regions, the Mauritian shelf provides a natural situation to understand the variability in mesotrophic assemblages. Site-specific dynamics occur throughout the 1200 m depth gradient. The shallow assemblages divide into three types of warm-water mesotrophic foraminiferal assemblages, which is not only a consequence of high primary productivity restricting light to the benthos but due to low pore water oxygenation, shelf geomorphology, and sediment partitioning. In the intermediate depth (approx. 500 m), the increase in foraminiferal diversity is due to the cold-water coral habitat providing a greater range of micro niches. Planktonic species characterise the lower bathyal zone, which emphasizes the reduced benthic carbonate production at depth. Although, due to the strong hydrodynamics within the Golf, planktonic species occur in notable abundances through out the whole depth gradient. Overall, this study can easily be compared to other tropical marine settings investigating the long-term effects of tropical eutrophication and the biogeographic distribution of carbonate producing organisms.
Resumo:
We investigated 88 surface sediment samples taken with a multiple corer from the southwestern South Atlantic Ocean for their live (Rose Bengal stained) and dead benthic foraminiferal content. Using Q-Mode Principal Component Analysis six live and six dead associations are differentiated. Live and dead association distributions correspond fairly well; differences are mainly caused by downslope transport and selective test destruction. In addition, four potential fossil associations are calculated from the dead data set after removal of non-fossilizable species. These potential fossil associations are expected to be useful for paleoceanographic reconstructions. Environments are described in detail for the live and potential fossil associations and for selected species. Along the upper Argentine continental slope strong bottom currents control the occurrence of live, dead and potential fossil Angulogerina angulosa associations. Here, particles of a high organic carbon flux rate remain suspended. Below this high energy environment live, dead and potential fossil Uvigerina peregrina dominated associations correlate with enhanced sediment organic carbon content and still high organic carbon flux rates. The live A. angulosa and U. peregrina associations correlate with high standing crops. Furthermore, live and dead Epistominella exigua-Nuttallides umbonifer associations were separated. Dominance of a Nuttallides umbonifer potential fossil association relates to coverage by Antarctic Bottom Water (AABW) and Lower Circumpolar Deep Water (LCDW), above the Calcite Compensation Depth (CCD). Three associations of mainly agglutinated foraminifera occur in sediments bathed mainly by AABW or CDW. A Reophax difflugiformis association was found in mud-rich and diatomaceous sediments. Below the CCD, a Psammosphaera fusca association occurs in coarse sediments poor in organic carbon while a Cribrostomoides subglobosus-Ammobaculites agglutinans association covers a more variable environmental range with mud contents exceeding 30%. One single Eggerella bradyi-Martinottiella communis association poor in both species and individuals remains from the agglutinated associations below the CCD if only preservable species are considered for calculation.
Resumo:
The area west of the Antarctic Peninsula is a key region for studying and understanding the history of glaciation in the southern high latitudes during the Neogene with respect to variations of the western Antarctic continental ice sheet, variable sea-ice cover, induced eustatic sea level change, as well as consequences for the global climatic system (Barker, Camerlenghi, Acton, et al., 1999). Sites 1095, 1096, and 1101 were drilled on sediment drifts forming the continental rise to examine the nature and composition of sediments deposited under the influence of the Antarctic Peninsula ice sheet, which has repeatedly advanced to the shelf edge and subsequently released glacially eroded material on the continental shelf and slope (Barker et al., 1999). Mass gravity processes on the slope are responsible for downslope sediment transport by turbidity currents within a channel system between the drifts. Furthermore, bottom currents redistribute the sediments, which leads to final build up of drift bodies (Rebesco et al., 1998). The high-resolution sedimentary sequences on the continental rise can be used to document the variability of continental glaciation and, therefore, allow us to assess the main factors that control the sediment transport and the depositional processes during glaciation periods and their relationship to glacio-eustatic sea level changes. Site 1095 lies in 3840 m of water in a distal position on the northwestern lower flank of Drift 7, whereas Site 1096 lies in 3152 m of water in a more proximal position within Drift 7. Site 1101 is located at 3509 m water depth on the northwestern flank of Drift 4. All three sites have high sedimentation rates. The oldest sediments were recovered at Site 1095 (late Miocene; 9.7 Ma), whereas sediments of Pliocene age were recovered at Site 1096 (4.7 Ma) and at Site 1101 (3.5 Ma). The purpose of this work is to provide a data set of bulk sediment parameters such as CaCO3, total organic carbon (TOC), and coarse-fraction mass percentage (>63 µm) measured on the sediments collected from the continental rise of the western Antarctic Peninsula (Holes 1095A, 1095B, 1096A, 1096B, 1096C, and 1101A). This information can be used to understand the complex depositional processes and their implication for variations in the climatic system of the western Pacific Antarctic margin since 9.7 Ma (late Miocene). Coarse-fraction particles (125-500 µm) from the late Pliocene and Pleistocene (4.0 Ma to recent) sediments recovered from Hole 1095A were microscopically analyzed to gather more detailed information about their variability and composition through time. These data can yield information about changes in potential source regions of the glacially eroded material that has been transported during repeated periods of ice-sheet movements on the shelf.
(Table T7) Coarse-fraction particle counts, ages, and linear sedimentation rates, ODP Hole 178-1095A
(Table T7) Coarse-fraction particle counts, ages, and linear sedimentation rates, ODP Hole 178-1095B
Resumo:
Congresso realizado em Mendoza, Argentina de 28 de setembro a 3 de outubro de 2014
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H = 0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (p = 0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise FST values and the results of exact tests and AMOVA revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata