998 resultados para ALUMINOXANE CATALYSTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of substitution of [Pd(PPh3)(4)], which is unstable in air, by complexes of the type [MCl2L2] (M = Pd, Pt; L = AsPh3, SbPh3), [PdL4](L = PPh3, AsPh3, SbPh3) and [NiX2(PPh3)(2)] on the syntheses of thioethers, acetylenes and ketones is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene was polymerized using a combination of Ni(diimine)Cl-2 (1) (diimine = 1,4-bis(2,6-di-isopropylphenyl)-acenaphthenediimine) and {Tp(Ms)*} TiCl3 (2) (Tp(Ms)* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) compounds in the presence of methyl-aluminoxane (MAO) at 30 degrees C. The productivity reaches a maximum at X-Ni = 0.75 (1400 kg of PE/mol[M] . h), and the produced polyethylene (PE) showed maximal melt flow index (0.13 g/10 min) and minimal intrinsic viscosity (2.24 dL/g) compared to polyethylenes obtained with different values of nickel loading fractions (X-Ni). Productivity intrinsic viscosity data, as well as melt flow index measurements markedly depend upon the content of the late transition metal, thus suggesting a synergic effect between nickel and titanium catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of TlTp' (Tp' = HB(3-mesitylpyrazolyl)(3)(-) (Tp(Ms)), HB(3-mesitylpyrazolyl)(2)(5-mesitylpyrazolyl)(-) (Tp(Ms)*)) with NiCl(2).6H(2)O affords Tp(Ms)NiCl (1) and Tp(Ms)*NiCl (2) in good yield. The compound 2 undergoes an isomerization process to form [{Tp(Ms)**}NiCl](2) (3) (Tp(Ms)** = HB(5-mesitylpyrazolyl)(2)(3-mesitylpyrazolyl)(-)) in 68% yield. Treatment of the tris(pyrazolyl)-borate nickel compounds 1 and 2 with alkylaluminum cocatalysts such as methylalumoxane (MAO) and trimethylaluminum (TMA) in toluene generates active catalysts for ethylene oligomerization. The compound 1 shows turnover frequencies in the range of (2.2-43.1) x 10(3) h(-1). Oligomerization reaction conditions can be adjusted that lead to selectivities as high as 81% for butene-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under "solvent free" conditions and promoted by MW (microwave) irradiation. A "two sites" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CO2 reforming of CH4 was carried out over Ni catalysts supported on γ-Al2O3 and CeO 2-promoted γ-Al2O3. The catalysts were characterized by means of surface area measurements, TPR, CO2 and H2 chemisorption, XRD, SEM, and TEM. The CeO2 addition promoted an increase of catalytic activity and stability. The improvement in the resistance to carbon deposition is attributed to the highest CO2 adsorption presented by the CeO2 addition. The catalytic behavior presented by the samples, with a different CH4/CO2 ratio used, points to the CH4 decomposition reaction as the main source of carbon deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic activity and selectivity of niobate-based nanostructured materials were investigated. Dry methane reforming (DMR) and ethylene homologation reaction (EHR) were selected as test reactions. KSr 2Nb5O15, Sr2NaNb5O 15 and NaSr2(NiNb4)O15 δ niobate powders were prepared by the high energy ball milling method and calcined in a reductor atmosphere. N2 adsorption isotherms, X-ray diffraction and infrared spectroscopy characterization was performed. Hydrogen pretreated niobates showed from low to moderate catalytic initial activity in DMR's test, nevertheless the materials were deactivated rapidly and the kinetic parameters associated to deactivation were estimated. Otherwise, non-treated catalysts showed a high initial activity in EHR's test and KSr2Nb 5O15 catalyst requires 24 h to the total deactivation with a high selectivity to form propylene. A reaction mechanism to the propylene formation is discussed. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes the efficiency of heterogeneous photocatalytic reactor for the inactivation of three air born bacteria, Escherichia coli, Bacillus subtilis and Staphylococcus aureus using metal modified TiO2 photocatalysts and blacklight irradiation. The catalysts were prepared by photodeposition of silver, palladium or iron on commercial TiO2, immobilized on glass plates. X-ray photoelectron spectroscopy analysis was applied to determine the atomic percentage and species of each metal on the TiO2 surface, showing that 85% of silver, 73% of palladium and 45% of iron were present in metallic form on TiO2 surface. The plates were positioned on the inner lateral walls of a chamber through which the contaminated air flow passed for disinfection. Irradiation of bare TiO 2 resulted in 50% inactivation of E. coli while 41% and 35% inactivation of B. subtilis and S. aureus were obtained, respectively. When metal modified TiO2 was applied, the inactivation of B. subtilis was improved to 91% using Pd-TiO2 while of S. aureus was improved to 94% with Fe-TiO2, showing in this case no significant difference when compared to Ag-TiO2 and Pd-TiO2. In contrast, inactivation of E. coli was not significantly increased when metal modified TiO2 was used, ranging from 47% to 57%. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of amorphous (am-), monoclinic (m-), and tetragonal (t-) ZrO2 phase on the physicochemical and catalytic properties of supported Cu catalysts for ethanol conversion was studied. The electronic parameters of Cu/ZrO2 were determined by in situ XAS, and the surface properties of Cu/ZrO2 were defined by XPS and DRIFTS of CO-adsorbed. The results demonstrated that the kind of ZrO2 phase plays a key role in the determination of structure and catalytic properties of Cu/ZrO 2 catalysts predetermined by the interface at Cu/ZrO2. The electron transfer between support and Cu surface, caused by the oxygen vacancies at m-ZrO2 and am-ZrO2, is responsible for the active sites for acetaldehyde and ethyl acetate formation. The highest selectivity to ethyl acetate for Cu/m-ZrO2 catalyst up to 513 K was caused by the optimal ratio of Cu0/Cu+ species and the high density of basic sites (O2-) associated with the oxygen mobility from the bulk m-ZrO2. © 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, Co/CeO2 catalysts, with different cobalt contents were prepared by the polymeric precursor method and were evaluated for the steam reforming of ethanol. The catalysts were characterized by N-2 physisorption (BET method), X-ray diffraction (XRD), UV-visible diffuse reflectance, temperature programmed reduction analysis (TPR) and field emission scanning electron microscopy (FEG-SEM). It was observed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. Physical-chemical characterizations revealed that the cobalt content of the catalyst influences the metal-support interaction which results in distinct catalyst performances. The catalyst with the highest cobalt content showed the best performance among the catalysts tested, exhibiting complete ethanol conversion, hydrogen selectivity close to 66% and good stability at a reaction temperature of 600 degrees C. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we discuss the effects of catalyst load with respect to carbon powder for several Pt and Pb-based catalysts, using formic acid as a model molecule. The discussion is based on electrochemical tests, a complete morphological investigation and theoretical calculations. We show that the Pt and Pb-based catalysts presented activity in formic acid oxidation at very low catalyst loads (e.g., 0.5% in respect to the carbon content). Physical characterisations demonstrate that the electrodes are composed of separated phases of Pt and lead distributed in Pt nanometric-sized islands that are heterogeneously dispersed on the carbon support and Pb ultra-small particles homogeneously distributed throughout the entire carbon surface, as demonstrated by the microscopy studies. At high catalyst loads, very large clusters of Pb(x)O(y) could be observed. Electrochemical tests indicated an increase in the apparent resistance of the system (by a factor of 19.7 Omega) when the catalyst load was increased. The effect of lead in the materials was also studied by theoretical calculations (OFT). The main conclusion is that the presence of Pb atoms in the catalyst can improve the adsorption of formic acid in the catalytic system compared with a pure Pt-based catalyst. (C) 2011 Elsevier B.V. All rights reserved.