939 resultados para 58-444
Resumo:
Aim. Our aim in this paper is to explain a methodological/methods package devised to incorporate situational and social world mapping with frame analysis, based on a grounded theory study of Australian rural nurses' experiences of mentoring. Background. Situational analysis, as conceived by Adele Clarke, shifts the research methodology of grounded theory from being located within a postpositivist paradigm to a postmodern paradigm. Clarke uses three types of maps during this process: situational, social world and positional, in combination with discourse analysis. Method. During our grounded theory study, the process of concurrent interview data generation and analysis incorporated situational and social world mapping techniques. An outcome of this was our increased awareness of how outside actors influenced participants in their constructions of mentoring. In our attempts to use Clarke's methodological package, however, it became apparent that our constructivist beliefs about human agency could not be reconciled with the postmodern project of discourse analysis. We then turned to the literature on symbolic interactionism and adopted frame analysis as a method to examine the literature on rural nursing and mentoring as secondary form of data. Findings. While we found situational and social world mapping very useful, we were less successful in using positional maps. In retrospect, we would argue that collective action framing provides an alternative to analysing such positions in the literature. This is particularly so for researchers who locate themselves within a constructivist paradigm, and who are therefore unwilling to reject the notion of human agency and the ability of individuals to shape their world in some way. Conclusion. Our example of using this package of situational and social worlds mapping with frame analysis is intended to assist other researchers to locate participants more transparently in the social worlds that they negotiate in their everyday practice. © 2007 Blackwell Publishing Ltd.
Resumo:
Sing & Grow is an early intervention music therapy project presented to families with additional needs, or those at risk of experiencing disadvantage due to social and/or economic circumstances that may impact on their parenting experiences. The aim of the project is to provide short term music therapy programs to families in communities where access to such services may be limited. The program is strengths-based and focuses on building upon a parent’s capacity to relate to and respond to their child’s emotional and developmental needs.
Resumo:
Beam steering with high front-to-back ratio and high directivity on a small platform is proposed. Two closely spaced antenna pairs with eigenmode port decoupling are used as the basic radiating elements. Two orthogonal radiation patterns are obtained for each antenna pair. High front-to-back ratio and high directivity are achieved by combining the two orthogonal radiation patterns. With an infinite groundplane, a front-to-back ratio of 21 dB with a directivity of 9.8 dB can be achieved. Beam steering, at the expense of a slight decrease in directivity, is achieved by placing the two antenna pairs 0.5λ apart. The simulated half power beamwidth is 58°. A prototype was designed and the 2-D radiation patterns were measured. The prototype supports three directions of beam steering. The half power beamwidth was measured as 46°, 48°, and 50° for the three respective beam directions. The measured front-to-back ratio in azimuth plane is 8.5 dB, 8.0 dB and 7.6 dB, respectively.
Resumo:
Some minerals are colloidal and are poorly diffracting . Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe4(AsO4)(SO4)(OH)•15H2O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43-, SO42- and water stretching vibrations. The sharp band at 3515 cm-1 is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe3+,AsO4,SO4,H2O).
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
Eating behaviour traits, namely Disinhibition and Restraint, have the potential to exert an effect on food intake and energy balance. The effectiveness of exercise as a method of weight management could be influenced by these traits. Fifty eight overweight and obese participants completed 12-weeks of supervised exercise. Each participant was prescribed supervised exercise based on an expenditure of 500 kcal/session, 5 d/week for 12-weeks. Following 12-weeks of exercise there was a significant reduction in mean body weight (-3.26 ± 3.63 kg), fat mass (FM: -3.26 ± 2.64 kg), BMI (-1.16 ± 1.17 kg/m2)and waist circumference (WC: -5.0 ± 3.23 cm). Regression analyses revealed a higher baseline Disinhibition score was associated with a greater reduction in BMI and WC, while Internal Disinhibition was associated with a larger decrease in weight, %FM and WC. Neither baseline Restraint or Hunger were associated with any of the anthropometric markers at baseline or after 12-weeks. Furthermore, after 12-weeks of exercise, a decrease in Disinhibition and increase in Restraint were associated with a greater reduction in WC, whereas only Restraint was associated with a decrease in weight. Post-hoc analysis of the sub-factors revealed a decrease in External Disinhibition and increase in Flexible Restraint were associated with weight loss. However, an increase in Rigid Restraint was associated with a reduction in %FM and WC. These findings suggest that exercise-induced weight loss is more marked in individuals with a high level of Disinhibition. These data demonstrate the important roles that Disinhibition and Restraint play in the relationship between exercise and energy balance.
Resumo:
The idea of body weight regulation implies that a biological mechanism exerts control over energy expenditure and food intake. This is a central tenet of energy homeostasis. However, the source and identity of the controlling mechanism have not been identified, although it is often presumed to be some long-acting signal related to body fat, such as leptin. Using a comprehensive experimental platform, we have investigated the relationship between biological and behavioural variables in two separate studies over a 12-week intervention period in obese adults (total n 92). All variables have been measured objectively and with a similar degree of scientific control and precision, including anthropometric factors, body composition, RMR and accumulative energy consumed at individual meals across the whole day. Results showed that meal size and daily energy intake (EI) were significantly correlated with fat-free mass (FFM, P values ,0·02–0·05) but not with fat mass (FM) or BMI (P values 0·11–0·45) (study 1, n 58). In study 2 (n 34), FFM (but not FM or BMI) predicted meal size and daily EI under two distinct dietary conditions (high-fat and low-fat). These data appear to indicate that, under these circumstances, some signal associated with lean mass (but not FM) exerts a determining effect over self-selected food consumption. This signal may be postulated to interact with a separate class of signals generated by FM. This finding may have implications for investigations of the molecular control of food intake and body weight and for the management of obesity.