989 resultados para 3D camera


Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文介绍了星球探测机器人视觉系统的标定方法,首先介绍了一种新的从视觉坐标系到车体坐标系的变换方法,随后给出了像机的模型,在像机参数优化过程中将三维重投影误差作为评价函数,利用遗传算法完成寻优过程,以保证估计出的像机参数全局最优。真实环境实验结果表明:该方法具有较高的空间定位精度。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

介绍了基于模型的位姿估计中所使用的一些优化方法。为了提高位姿估计的精度,摄像机的标定参数必须足够精确,这就对标定过程的非线性优化算法提出了很高的要求,采用了一种新的优化目标函数,用来最小化控制点间的三维重建误差,从而使标定参数是全局最优;在双像机位姿估计中,引入了实时遗传算法进行全局搜索,加快了算法的收敛速度。最后的实验证明了这些方法的正确性并显示出这些方法在精度上比传统方法有了较大程度的提高。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

微观尺度下的观测与操作是进行微纳米科学技术研究与实现、微纳米特性发现与利用、加工制造的重要技术手段。因此微纳米操作的关键技术问题主要包括两个方面:微纳米操作的观测成像,通过成像微纳米尺度下的物体可以被观测者所感知和观测;利用感知与观测信息指导微纳米尺度下机械操作控制。深度信息在计算机视觉的研究中占有着重要的地位,它使我们更好地理解现实世界中物体的3D关系。因此,利用深度信息实现3D测量逐渐被应用于微纳米操作的观测成像领域。工作域显微图像是唯一能反映被控目标体运动和位置的反馈信息,自然对象的深度信息也只能从此中获得。虽然很难自动地从这个平面图像中获得,但根据显微镜点扩散模型的光学特点,可以构造合理的模糊度判据,实现对象深度信息恢复。本文作者以微观尺度下的3D视觉观测与可视化为应用背景,通过分析几何光学成像中的各种成像规律。建立图像的模糊度判据,并利用该判据完成了微观尺度下的3D视觉观测与可视化。主要工作包括:(1)分析光学成像的基本原理,了解光学成像过程中聚焦和离焦成像现象发生条件和描述方法;分析图像清晰/模糊程度与景物深度变化之间的关系规律,进而给出基于光学图像信息的微观景物深度测量理论依据;(2)结合序列图像的清晰/模糊程度变化规律,分析不同测度算子对于清晰/模糊程度响应的灵敏度与适应性;提出建立适宜的模糊测度算子方法。(3)基于模糊测度算子和模糊化测度分布模型,提出建立微观尺度下的显微视觉图像与实际景物的模糊度-深度关系模型的获取实验方法。设计实验系统与实验方法,完成微观3D视觉观测;(4)通过基于模糊化测度的微观景物深度信息获取研究,提出微观景物的3D重建方法,实现微观尺度下的3D重建及其可视化方法,完成实验验证。本文就微纳米技术研究中的显微成像离焦现象进行了分析,给出了建立基于模糊测度的微米尺度下离焦度与景物深度信息关系的方法;分析了不同梯度算子所具有的不同模糊测度响应;并以实验验证了利用这种模糊测度可以对微观尺度下的景物进行深度信息获取,并且利用深度信息进行3D重建。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainbow三维摄像机是一种基于光谱分析的快速三维信息获取方法。该方法利用连续变化的彩色光谱照射景物 ,彩色CCD摄像机摄取的景物图像将呈现有规律的颜色变化 ,而且不同的颜色 (波长 )构成了不同的空间颜色面。通过标定这些颜色面和摄像机成象模型 ,即可计算出图像中各点的三维坐标。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainbow 三维摄像机是一种基于光谱分析的快速三维信息获取方法。该方法利用连续变化的彩色光谱照射景物,彩色CCD 摄像机摄取的景物图象将呈现有规律的颜色变化,而且不同的颜色(波长)构成了不同的空间颜色面。通过标定这些颜色面和摄像机成象模型,即可计算出图象中各点的三维坐标。该文重点讨论实现该方法的标定技术和颜色分类技术,最后给出实验结果。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

说明了像平面与空间平面的变换以及摄像机在固定,旋转和平移时变换矩阵的求解方法.还讨论了该变换在移动机器人定位,障碍物检测,运动参数分析和三维坐标计算上的应用。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

论述了一种基于立体视觉的建模方法。该方法利用立体视觉系统在不同视点对景物观测所获得的局部三维几何模型,通过空间特征点匹配和坐标变换将局部模型融合,从而建立景物的完整描述。文章重点介绍了一种基于空间向量的坐标变换求解方法。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

相机标定是2D图像重建3D测度信息的关键步骤,也是一项耗时的任务,由于标定过程中经常需要人工寻找对应点。本文提出了一种基于圆形标志点的全自动相机标定方法。首先,在传统圆形标志点模板的基础上增设了5个方位圆。然后提出了新标定板下图像特征点的自动检测和匹配算法。匹配结果直接作为Zhang的算法的输入,从而计算出相机内外参数,避免了标定过程的人工干预。最终实验结果显示了所提方法在不同场景和光照条件下的自动性和正确性。

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure from motion often refers to the computation of 3D structure from a matched sequence of images. However, a depth map of a surface is difficult to compute and may not be a good representation for storage and recognition. Given matched images, I will first show that the sign of the normal curvature in a given direction at a given point in the image can be computed from a simple difference of slopes of line-segments in one image. Using this result, local surface patches can be classified as convex, concave, parabolic (cylindrical), hyperbolic (saddle point) or planar. At the same time the translational component of the optical flow is obtained, from which the focus of expansion can be computed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore representation of 3D objects in which several distinct 2D views are stored for each object. We demonstrate the ability of a two-layer network of thresholded summation units to support such representations. Using unsupervised Hebbian relaxation, we trained the network to recognise ten objects from different viewpoints. The training process led to the emergence of compact representations of the specific input views. When tested on novel views of the same objects, the network exhibited a substantial generalisation capability. In simulated psychophysical experiments, the network's behavior was qualitatively similar to that of human subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polynomial time algorithm (pruned correspondence search, PCS) with good average case performance for solving a wide class of geometric maximal matching problems, including the problem of recognizing 3D objects from a single 2D image, is presented. Efficient verification algorithms, based on a linear representation of location constraints, are given for the case of affine transformations among vector spaces and for the case of rigid 2D and 3D transformations with scale. Some preliminary experiments suggest that PCS is a practical algorithm. Its similarity to existing correspondence based algorithms means that a number of existing techniques for speedup can be incorporated into PCS to improve its performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognition and classification. We distinguish between two types of similarity metrics: metrics computed in image-space (image metrics) and metrics computed in transformation-space (transformation metrics). Existing methods typically use image and the nearest view of the object. Example for such a measure is the Euclidean distance between feature points in the image and corresponding points in the nearest view. (Computing this measure is equivalent to solving the exterior orientation calibration problem.) In this paper we introduce a different type of metrics: transformation metrics. These metrics penalize for the deformatoins applied to the object to produce the observed image. We present a transformation metric that optimally penalizes for "affine deformations" under weak-perspective. A closed-form solution, together with the nearest view according to this metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in the sense that they bound each other from both above and below. For Euclidean image metric we offier a sub-optimal closed-form solution and an iterative scheme to compute the exact solution.