925 resultados para 3-dimensional Structure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the integrability properties of models defined on the symmetric space SU(2)/U(1) in 3 + 1 dimensions, using a recently proposed approach for integrable theories in any dimension. We point out the key ingredients for a theory to possess an infinite number of local conservation laws, and discuss classes of models with such property, We propose a 3 + 1-dimensional, relativistic invariant field theory possessing a toroidal soliton solution carrying a unit of topological charge given by the Hopf map. Construction of the action is guided by the requirement that the energy of static configuration should be scale invariant. The solution is constructed exactly. The model possesses an infinite number of local conserved currents. The method is also applied to the Skyrme-Faddeev model, and integrable submodels are proposed. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a novel method to calculate the electronic Density of States (DOS) of a two dimensional disordered binary alloy. The method is highly reliable and numerically efficient, and Short Range Order (SRO) correlations can be included with no extra computational cost. The approach devised rests on one dimensional calculations and is applied to very long stripes of finite width, the bulk regime being achieved with a relatively small number of chains in the disordered case. Our approach is exact for the pure case and predicts the correct DOS structure in important limits, such as the segregated, random, and ordered alloy regimes. We also suggest important extensions of the present work. © 1995.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We construct composite operators in two-dimensional bosonized QCD, which obey a W∞ algebra, and discuss their relation to analogous objects recently obtained in the fermionic language. A complex algebraic structure is unravelled, supporting the idea that the model is integrable. For singlets we find a mass spectrum obeying the Regge behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A correlation between lattice parameters, oxygen composition, and the thermoelectric and Hall coefficients is presented for single-crystal Li0.9Mo6O17, a quasi-one-dimensional (Q1D) metallic compound. The possibility that this compound is a compensated metal is discussed in light of a substantial variability observed in the literature for these transport coefficients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Local structure around Fe ions on Pb(Fe1/2Nb1/2)O-3 ceramics was probed by x-ray absorption spectroscopy in order to settle the controversies about its structure. It is observed that the shell structure around Fe atoms exhibits a monoclinic local symmetry at 130 and 230 K, tetragonal local symmetry at room temperature, and cubic local symmetry at 410 K. Independently of the coordination, temperature, or symmetry, Fe-O mean bond-length does not vary significantly. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4709490]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glasses in the system [Na2S](2/3)[(B2S3)(x)(P2S5)(1-x)](1/3) (0.0 <= x <= 1.0) were prepared by the melt quenching technique, and their properties were characterized by thermal analysis and impedance spectroscopy. Their atomic-level structures were comprehensively characterized by Raman spectroscopy and B-11, P-31, and Na-23 high resolution solid state magic-angle spinning (MAS) NMR techniques. P-31 MAS NMR peak assignments were made by the presence or absence of homonuclear indirect P-31-P-31 spin-spin interactions as detected using homonuclear J-resolved and refocused INADEQUATE techniques. The extent of B-S-P connectivity in the glassy network was quantified by P-31{B-11} and B-11{P-31} rotational echo double resonance spectroscopy. The results clearly illustrate that the network modifier alkali sulfide, Na2S, is not proportionally shared between the two network former components, B and P. Rather, the thiophosphate (P) component tends to attract a larger concentration of network modifier species than predicted by the bulk composition, and this results in the conversion of P2S74-, pyrothiophosphate, Na/P = 2:1, units into PS43-, orthothiophosphate, Na/P = 3:1, groups. Charge balance is maintained by increasing the net degree of polymerization of the thioborate (B) units through the formation of covalent bridging sulfur (BS) units, B S B. Detailed inspection of the B-11 MAS NMR spectra reveals that multiple thioborate units are formed, ranging from neutral BS3/2 groups all the way to the fully depolymerized orthothioborate (BS33-) species. On the basis of these results, a comprehensive and quantitative structural model is developed for these glasses, on the basis of which the compositional trends in the glass transition temperatures (T-g) and ionic conductivities can be rationalized. Up to x = 0.4, the dominant process can be described in a simplified way by the net reaction equation P-1 + B-1 reversible arrow P-0 + B-4, where the superscripts denote the number of BS atoms for the respective network former species. Above x = 0.4, all of the thiophosphate units are of the P-0 type and both pyro-(B-1) and orthothioborate (B-0) species make increasing contributions to the network structure with increasing x. In sharp contrast to the situation in sodium borophosphate glasses, four-coordinated thioborate species are generally less abundant and heteroatomic B-S-P linkages appear to not exist. On the basis of this structural information, compositional trends in the ionic conductivities are discussed in relation to the nature of the charge-compensating anionic species and the spatial distribution of the charge carriers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Chafee-Infante equation is one of the canonical infinite-dimensional dynamical systems for which a complete description of the global attractor is available. In this paper we study the structure of the pullback attractor for a non-autonomous version of this equation, u(t) = u(xx) + lambda(xx) - lambda u beta(t)u(3), and investigate the bifurcations that this attractor undergoes as A is varied. We are able to describe these in some detail, despite the fact that our model is truly non-autonomous; i.e., we do not restrict to 'small perturbations' of the autonomous case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We derive a closed-form result for the leading thermal contributions which appear in the n-dimensional I center dot (3) theory at high temperature. These contributions become local only in the long wavelength and in the static limits, being given by different expressions in these two limits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, the quaternary structures of Drosophila melanogaster hexamerin LSP-2 and Limulus polyphemus hemocyanin, both proteins from the hemocyanin superfamily, were elucidated to a 10 Å resolution with the technique of cryo-EM 3D-reconstruction. Furthermore, molecular modelling and rigid-body fitting allowed a detailed insight into the cryo-EM structures at atomic level. The results are summarised as follows: Hexamerin 1. The cryo-EM structure of Drosophila melanogaster hexamerin LSP-2 is the first quaternary structure of a protein from the group of the insect storage proteins. 2. The hexamerin LSP-2 is a hexamer of six bean-shaped subunits that occupy the corners of a trigonal antiprism, yielding a D3 (32) point-group symmetry. 3. Molecular modelling and rigid-body fitting of the hexamerin LSP-2 sequence showed a significant correlation between amino acid inserts in the primary structure and additional masses of the cryo-EM structure that are not present in the published quaternary structures of chelicerate and crustacean hemocyanins. 4. The cryo-EM structure of Drosophila melanogaster hexamerin LSP-2 confirms that the arthropod hexameric structure is applicable to insect storage proteins. Hemocyanin 1. The cryo-EM structure of the 8×6mer Limulus polyphemus hemocyanin is the highest resolved quaternary structure of an oligo-hexameric arthropod hemocyanin so far. 2. The hemocyanin is build of 48 bean-shaped subunits which are arranged in eight hexamers, yielding an 8×6mer with a D2 (222) point-group symmetry. The 'basic building blocks' are four 2×6mers that form two 4×6mers in an anti-parallel manner, latter aggregate 'face-to-face' to the 8×6mer. 3. The morphology of the 8×6mer was gauged and described very precisely on the basis of the cryo-EM structure. 4. Based on earlier topology studies of the eight different subunit types of Limulus polyphemus hemocyanin, eleven types of interhexamer interfaces have been identified that in the native 8×6mer sum up to 46 inter-hexamer bridges - 24 within the four 2×6mers, 10 to establish the two 4×6mers, and 12 to assemble the two 4×6mers into an 8×6mer. 5. Molecular modelling and rigid-body fitting of Limulus polyphemus and orthologous Erypelma californicum sequences allowed to assign very few amino acids to each of these interfaces. These amino acids now serve as candidates for the chemical bonds between the eight hexamers. 6. Most of the inter-hexamer contacts are conspicuously histidine-rich and evince constellations of amino acids that could constitute the basis for the allosteric interactions between the hexamers. 7. The cryo-EM structure of Limulus polyphemus hemocyanin opens the door to a fundamental understanding of the function of this highly cooperative protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic molecular semiconductors are subject of intense research for their crucial role as key components of new generation low cost, flexible, and large area electronic devices such as displays, thin-film transistors, solar cells, sensors and logic circuits. In particular, small molecular thienoimide (TI) based materials are emerging as novel multifunctional materials combining a good processability together to ambipolar or n-type charge transport and electroluminescence at the solid state, thus enabling the fabrication of integrated devices like organic field effect transistors (OFETs) and light emitting transistor (OLETs). Given this peculiar combination of characteristics, they also constitute the ideal substrates for fundamental studies on the structure-property relationships in multifunctional molecular systems. In this scenario, this thesis work is focused on the synthesis of new thienoimide based materials with tunable optical, packing, morphology, charge transport and electroluminescence properties by following a fine molecular tailoring, thus optimizing their performances in device as well as investigating and enabling new applications. Investigation on their structure-property relationships has been carried out and in particular, the effect of different π-conjugated cores (heterocycles, length) and alkyl end chain (shape, length) changes have been studied, obtaining materials with enhanced electron transport capability end electroluminescence suitable for the realization of OFETs and single layer OLETs. Moreover, control on the polymorphic behaviour characterizing thienoimide materials has been reached by synthetic and post-synthetic methodologies, developing multifunctional materials from a single polymorphic compound. Finally, with the aim of synthesizing highly pure materials, simplifying the purification steps and avoiding organometallic residues, procedures based on direct arylation reactions replacing conventional cross-couplings have been investigated and applied to different classes of molecules, bearing thienoimidic core or ends, as well as thiophene and anthracene derivatives, validating this approach as a clean alternative for the synthesis of several molecular materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three-dimensional electron microscopy (3-D EM) provides a framework for the analysis of large protein quaternary structures. The advantage over the generally higher resolving meth- od of X-ray crystallography is the embedding of the proteins in their physiological environ- ment. However, results of the two methods can be combined to obtain superior structural information. In this work, three different protein types – (i) Myriapod hemocyanin, (ii) vesi- cle-inducing protein in plastids 1 (Vipp1) and (iii) acetylcholine-binding protein (AChBP) – were structurally analyzed by 2-D and 3-D EM and, where possible, functionally interpreted.rnMyriapod hemocyanins have been previously shown to be 6x6-meric assemblies that, in case of Scutigera coleoptrata hemocyanin (ScoHc), show two 3x6-mer planes whith a stag- gering angle of approximately 60°. Here, previously observed structural differences between oxy- and deoxy-ScoHc could be substantiated. A 4° rotation between hexamers of two dif- ferent 3x6-mer planes was measured, which originates at the most central inter-hexamer in- terface. Further information about allosteric behaviour in myriapod hemocyanin was gained by analyzing Polydesmus angustus hemocyanin (PanHc), which shows a stable 3x6-mer and divergent histidine patterns in the inter-hexamer interfaces when compared to ScoHc. Both findings would conclusively explain the very different oxygen binding properties of chilopod and diplopod hemocyanin.rnVipp1 is a protein found in cyanobacteria and higher plants which is essential for thyla- koid membrane function and forms highly variable ring-shaped structures. In the course of this study, the first 3-D analysis of Vipp1 was conducted and yielded reconstructions of six differently sized Vipp1 rings from negatively stained images at resolutions between 20 to 30 Å. Furthermore, mutational analyses identified specific N-terminal amino acids that are essential for ring formation. On the basis of these analyses and previously published results, a hypothetical model of the Vipp1 tertiary and quaternary structure was generated.rnAChBP is a water-soluble protein in the hemolymph of mollusks. It is a structural and functional homologue of the ligand-binding domain of nicotinic acetylcholine receptors. For the freshwater snail Biomphalaria glabrata, we previously described two types of AChBP (BgAChBP1 and BgAChBP2). In this work, a 6 Å 3-D reconstruction of native BgAChBP is presented, which shows a dodecahedral assembly that is unprecedented for an AChBP. Single particle analysis of recombinantely expressed BgAChBP types led to preliminary results show- ing a dodecahedral assembly of BgAChBP1 and a dipentameric assembly of BgAChBP2. This indicates divergent biological functions of the two types.