950 resultados para 250201 Transition Metal Chemistry
Resumo:
Amalgam has been used as a filling material for over 150 years. Mercury, copper, and zinc are present in restoration. The aim of this study was to compare mercury, copper, and zinc concentrations in extracted human teeth with amalgam restorations and teeth without restorations. Thirty-two teeth, 15 restored with dental amalgam and 17 without restorations, were chemically analyzed in an Optima 3300 DV (Perkin Elmer) plasma emission spectrometer. Mercury, copper, and zinc were found in human teeth regardless of the presence of amalgam restorations. The highest mercury concentrations were found in the coronary portions of the teeth with amalgam restorations. Copper concentrations were very high. Zinc concentrations in the teeth without restoration were lower than those seen in the coronary portion of the teeth with restorations. © 2009 Heldref Publications.
Resumo:
In this work, a silica surface chemically modified with [3-(2,2′-dipyridylamine)propyl] groups, named [3-(2,2′- dipyridylamine)propyl]silica (Si-Pr-DPA) was prepared, characterized, and evaluated for its heavy metal adsorption characteristics from aqueous solution. To our knowledge, we are the first authors who have reported the present modification. The material was characterized using infrared spectroscopy, SEM, and NMR 29Si and 13C solid state. Batch and column experiments were conducted to investigate for heavy metal removal from dilute aqueous solution by sorption onto Si-Pr-DPA. From a number of studies the affinity of various metal ions for the Si-Pr-DPA sorbent was determined to follow the order Fe(III) > Cr(III) >> Cu(II) > Cd(II) > Pb(II) > Ni(II). Two standard reference materials were used for checking the accuracy and precision of the method. The proposed method was successfully applied to the analysis of environmental samples. This ligand material has great advantage for adsorption of transition-metal ions from aqueous medium due to its high degree of organofunctionalization associated with the large adsorption capacity, reutilization possibility, and rapidity in reaching the equilibrium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The understanding and control of ferromagnetism in diluted magnetic semiconducting oxides (DMO) is a special challenge in solid-state physics and materials science due to its impact in magneto-optical devices and spintronics. Several studies and mechanisms have been proposed to explain intrinsic ferromagnetism in DMO compounds since the theoretical prediction of room-temperature ferromagnetism. However, genuine and intrinsic ferromagnetism in 3d-transition metal-doped n-type ZnO semiconductors is still a controversial issue. Furthermore, for DMO nanoparticles, some special physical and chemical effects may also play a role. In this contribution, structural and magnetic properties of sonochemically prepared cobalt-doped ZnO nanoparticles were investigated. A set of ZnO samples was prepared varying cobalt molar concentration and time of ultrasonic exposure. The obtained results showed that single phase samples can be obtained by the sonochemical method. However, cobalt nanoclusters can be detected depending on synthesis conditions. Magnetic measurements indicated a possible ferromagnetic response, associated to defects and cobalt substitutions at the zinc site by cobalt. However, ferromagnetism is depleted at higher magnetic fields. Also, an antiferromagnetic response is detected due to cobalt oxide cluster at high cobalt molar concentrations. © 2012 Springer Science+Business Media, LLC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The need for renewal and a more efficient use of energy resources has provided an increased interest in studies of methane activation processes in the gas phase by transition metal oxides. In this respect, the present work is an effort to assess , by means of a computational standpoint, the reactivity of NbOm n+ and FeOm n+ (m = 1, 2, n = 0, 1, 2) oxides in the activation process of the methane C-H bond, which corresponds to the first rate limiting step in the process of converting methane to methanol. These oxides are chosen, primarily, because the iron oxides are the most experimentally studied, and iron ions are more abundant in biological mediums. The main motive for choosing niobium oxides is the abundance of natural reserves of this mineral in Brazil (98%), especially in Minas Gerais. Initially, a thorough investigation was conducted, using different theoretical methods, to analyze the structural and electronic properties of the investigated oxides. Based on these results, the most reliable methodology was selected to investigate the activation process of the methane C-H bond by the series of iron and niobium oxides, considering all possible reaction mechanisms known to activate the C-H bond of alkanes. It is worth noting that, up to this moment and to our knowledge, there are no papers, in literature , investigating and comparing all the mechanisms considered in this work. I n general, the main results obtained show different catalytic tendencies and behaviors throughout the series of monoxides and dioxides of iron and niobium. An important and common result found in the two studies is that the increase in the load on the metal center and the addition of oxygen atoms to the metal, clearly favor the initial thermodynamics of the reaction, i.e., favor the approach of the metal center to methane, distorting its electron cloud and, thereby, decreasing its inertia. Comparing the two sets of oxides, we conclude that the iron oxides are the most efficient in activating the methane C-H bond. Among the iron oxides investigated, FeO + showed better kinetic and thermodynamic performance in the reaction with methane, while from the niobium oxides and ions NbO 2+ and NbO2 2+, showed better catalytic efficiency in the activation of the methane C-H bond.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A difração múltipla de raios-X utilizando radiação Síncrotron foi aplicada para o estudo de cátions de metais de transição Mn3+ e Ni2+ incorporados a rede cristalina do Fosfato de Amônio Monobásico (ADP) e Fosfato de Potássio Monobásico (KDP). Em todos os diagramas Renninger obtidos para as diferentes amostras e diferentes comprimentos de onda podemos observar que as posições angulares e o número de picos não sofrem alteração. Este fato nos diz que os parâmetros da célula unitária e a simetria do cristal são praticamente os mesmos, independentemente da incorporação de cátíons Mn3+ e Ni2+. Cálculos precisos dos parâmetros da célula unitária revelam que há expansão dos parâmetros de rede a = b e contração do parâmetro de rede c do cristal de ADP dopado com Ni2+ e Mn3+. Nas medidas com ambos os comprimentos de onda no ADP:Mn o digrama Renninger apresenta picos com perfis semelhantes aos perfis dos picos nos diagrama Renninger do cristal de ADP puro. Nenhum pico extra aparece no diagrama Renninger do cristal dopado. A partir dos diagramas resultantes das medidas no cristal de ADP:Ni pode-se observar claramente: (i) alguns picos que tinham um perfil assimétrico no diagrama do cristal de ADP puro apresentam perfis quase totalmente simétricos no diagrama do cristal dopado com Ni
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ