968 resultados para 2 hydroxypropyl beta cyclodextrin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two 17-mer oligodeoxynucleotide-5'-linked-(6,7-diphenylpterin) conjugates, 2 and 3, were prepared as photosensitisers for targeting photooxidative damage to a 34-mer DNA oligodeoxynucleotide (ODN) fragment 1 representing the chimeric bcr-abl gene that is implicated in the pathogenesis of chronic myeloid leukaemia (CML). The base sequence in the 17-mer was 3'G G T A G T T A T T C C T T C T T5'. In the first of these ODN conjugates (2) the pterin was attached at its N3 atom, via a -(CH2)3OPO(OH)- linker, to the 5'-OH group of the ODN. Conjugate 2 was prepared from 2-amino-3-(3-hydroxypropyl)-6,7-diphenyl-4(3H)-pteridinone 10, using phosphoramidite methodology. Starting material 10 was prepared from 5-amino-7-methylthiofurazano[3,4-d]pyrimidine 4 via an unusual highly resonance stabilised cation 8, incorporating the rare 2H,6H-pyrimido[6,1-b][1,3]oxazine ring system. In the characterisation of 10 two pteridine phosphazenes, 15 and 29, were obtained, as well as new products containing two uncommon tricyclic ring systems, namely pyrimido[2,1-b]pteridine (20 and 24) and pyrimido[1,2-c]pteridine (27). In the second ODN conjugate the linker was -(CH2)5CONH(CH2)6OPO(OH)- and was attached to the 2-amino group of the pterin. In the preparation of 3, the N-hydroxysuccinimide ester 37 of 2-(5-carboxypentylamino)-6,7-diphenyl-4(3H)-pteridinone was condensed with the hexylamino-modified 17-mer. Excitation of 36 with near UV light in the presence of the single-stranded target 34-mer, 5'T G A C C A T C A A T A A G14 G A A G18 A A G21 C C C T T C A G C G G C C3' 1 caused oxidative damage at guanine bases, leading to alkali-labile sites which were monitored by polyacrylamide gel electrophoresis. Cleavage was observed at all guanine sites with a marked preference for cleavage at G14. In contrast, excitation of ODN-pteridine conjugate 2 in the presence of 1 caused oxidation of the latter predominantly at G18, with a smaller extent of cleavage at G15 and G14 (in the double-stranded portion) and G21. These results contrast with our previous observation of specific cleavage at G21 with ruthenium polypyridyl sensitisers, and suggest that a different mechanism, probably one involving Type 1 photochemical electron transfer, is operative. Much lower yields were found with the ODN-pteridine conjugate 3, perhaps as a consequence of the longer linker between the ODN and the pteridine in this case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sedatives and tranquillisers are frequently used to reduce stress during the transportation of food producing animals. The most widely used classes of sedatives include the butyrophenone azaperone, the phenothiazines acepromazine, propionylpromazine, chlorpromazine and the beta-blocker, carazolol. For regulatory control purposes, tolerances for azaperone and carazolol have been set by the European Union as 100 and 25 mug kg(-1), respectively. Furthermore, the use of the phenothiazines is prohibited and therefore has a zero tolerance. A method for the detection of residues of five tranquillisers and one beta-blocker using a single ELISA plate has been developed. Kidney samples (2.5 g) were extracted with dichloromethane and applied to a competitive enzyme immunoassay using three polyclonal antibodies raised in rabbits against azaperol, propionylpromazine and carazolol conjugates. In sample matrix, the azaperol antibody cross-reacted 28.0% with azaperone and the propionylpromazine antibody cross-reacted 24.9% with acepromazine and 11.7% with chlorpromazine. In the ELISA, the detection capabilities of the six sedatives, azaperol, azaperone, carazolol, acepromazine, chlorpromazine, and propionylpromazine are 5, 15, 5, 5, 20 and 5 mug kg(-1), respectively. The proposed method is a sensitive and rapid multi-residue technique that offers a cost effective alternative to current published procedures, without any concession on the ability to detect sedative misuse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our previous studies have shown that overexpression of beta1,4-galactosyltransferase1 (beta1,4GT1) leads to increased apoptosis induced by cycloheximide (CHX) in SMMC-7721 human hepatocarcinoma cells. However, the role of beta1,4GT1 in apoptosis remains unclear. Here we demonstrated that cell surface beta1,4GT1 inhibited the autophosphorylation of epidermal growth factor receptor (EGFR) especially at Try 1068. The phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated protein kinase1/2 (ERK1/2), which are downstream molecules of EGFR, were also reduced in cell surface beta1,4GT1-overexpressing cells. Furthermore, the translocations of Bad and Bax that are regulated by PKB/Akt and ERK1/2 were also increased in these cells. As a result, the release of cytochrome c from mitochondria to cytosol was increased and caspase-3 was activated. In contrast, RNAi-mediated knockdown of beta1,4GT1 increased the autophosphorylation of EGFR. These results demonstrated that cell surface beta1,4GT1 may negatively regulate cell survival possibly through inhibiting and modulating EGFR signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stimulatory effects of the synthetic beta-(1-->6)-branched beta-(1-->3) glucohexaose and its analogues containing an alpha-(1-->3)-linked bond on the mouse spleen were studied for elucidation of the mechanism of their antitumor activity, and their stimulatory effects were compared with Lentinan. The mouse spleen's weight was increased after the intraperitoneal (i.p.) injection of the oligosaccharides compared with the saline group. In addition, routinely hematoxylin and eosin (HE)-stained spleen sections showed that the injection also changed the spleen's histopathology. RNA samples were isolated from splenocytes of oligosaccharides, Lentinan or saline-injected mice. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot showed that the administration of the oligosaccharides or Lentinan enhanced mouse spleen mRNA production of TNF-alpha but not IL-2. The injection also enhanced Concanavalin A (Con A)-induced mouse splenocytes proliferation, but the in vitro administration of the oligosaccharides did not have the proliferation-enhancing effect. Taken together, these results suggest that the synthetic beta-(1-->6)-branched beta-(1-->3) glucohexaose and its analogues containing an alpha-(1-->3)-linked bond have similar stimulatory effects as Lentinan. Additionally, they may exert their antitumor effects through the induction of splenocytes mediated immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: Glycation of insulin, resulting in impaired bioactivity, has been shown within pancreatic beta cells. We have used a novel and specific radioimmunoassay to detect glycated insulin in plasma of Type 2 diabetic subjects.

Methods: Blood samples were collected from 102 Type 2 diabetic patients in three main categories: those with good glycaemic control with a HbA1c less than 7%, moderate glycaemic control (HbA1c 7–9%) and poor glycaemic control (HBA1c greater than 9%). We used 75 age- and sex-matched non-diabetic subjects as controls. Samples were analysed for HbA1c, glucose and plasma concentrations of glycated insulin and insulin.

Results: Glycated insulin was readily detected in control and Type 2 diabetic subjects. The mean circulating concentration of glycated insulin in control subjects was 12.6±0.9 pmol/l (n=75). Glycated insulin in the good, moderate and poorly controlled diabetic groups was increased 2.4-fold (p<0.001, n=44), 2.2- fold (p<0.001, n=41) and 1.1-fold (n=17) corresponding to 29.8±5.4, 27.3±5.7 and 13.5±2.9 pmol/l, respectively.

Conclusion/interpretation: Glycated insulin circulates at noticeably increased concentrations in Type 2 diabetic subjects. [Diabetologia (2003) 46:475–478]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

increasing prevalence of obesity combined with longevity will produce an epidemic of Type 2 (non-insulin-dependent) diabetes in the next 20 years. This. disease is associated with defects in insulin secretion, specifically abnormalities of insulin secretory kinetics and pancreatic beta-cell glucose responsiveness. Mechanisms underlying beta-cell dysfunction include glucose toxicity, lipotoxicity and beta-cell hyperactivity. Defects at various sites in beta-cell signal transduction pathways contribute, but no single lesion can account for the common form of Type 2 diabetes. Recent studies highlight diverse beta-cell actions of GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic polypeptide). These intestinal hormones target the beta-cell to stimulate glucose-dependent insulin secretion through activation of protein kinase A and associated pathways. Both increase gene expression and proinsulin biosynthesis, protect against apoptosis and stimulate replication/neogenesis of beta-cells. Incretin hormones therefore represent an exciting future multi-action solution to correct beta-cell defect in Type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The therapeutic potential of glucagon-like peptide-1 (GLP-1) in improving glycaemic control in diabetes has been widely studied, but the potential beneficial effects of glucose-dependent insulinotropic polypeptide (GIP) have until recently been almost overlooked. One of the major problems, however, in exploiting either GIP or GLP-1 as potential therapeutic agents is their short duration of action, due to enzymatic degradation in vivo by dipeptidylpeptidase IV (DPP IV). Therefore, this study examined the plasma stability, biological activity and antidiabetic potential of two novel NH2-terminal Ala(2)-substituted analogues of GIP, containing glycine (Gly) or serine (Ser). Following incubation in plasma, (Ser(2))GIP had a reduced hydrolysis rate compared with native GIP, while (Gly(2))GIP was completely stable. In Chinese hamster lung fibroblasts stably transfected with the human GIP receptor, GIP, (Gly(2))GIP and (Ser(2))GIP stimulated cAMP production with EC50 values of 18.2, 14.9 and 15.0 nM respectively. In the pancreatic BRIN-BD1 beta-cell line, (Gly(2))GIP and (Ser(2))GIP (10(-8) M) evoked significant increases (1.2- and 1.5-fold respectively; P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of three potent new antitumor agents is described: the A83586C-citropeptin hybrid (1), the A83586C-GE3 hybrid (2), and l-Pro-A83586C (3). Significantly, compounds 1 and 2 function as highly potent inhibitors of ß-catenin/TCF4 signaling within cancer cells, while simultaneously downregulating osteopontin (Opn) expression. A83586C antitumor cyclodepsipeptides also inhibit E2F-mediated transcription by downregulating E2F1 expression and inducing dephosphorylation of the oncogenic hyperphosphorylated retinoblastoma protein (pRb).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystals of mercuric bis(N-imino-methyl-formamidate), Hg(Imf)(2), were obtained from aqueous solutions of 1,2,4-triazole and Hg(NO3)(2)center dot 2H(2)O. The crystal structure [monoclinic, P2(1)/c (no. 14), a = 499.6(2), b = 1051.2(4), c = 711.1(3) pm, beta = 117.55(1)degrees, Z = 2, R, for 890 reflections with I-0 > 2 sigma(I-0): 0.0369] contains linear centrosymmetric Hg(Imf)(2) molecules with Hg-N distances of only 203.5(7)pm. Two plus two intra- and intermolecular nitrogen atoms add to an effective coordination number of 6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin resistance and diabetes might promote neurodegenerative disease, but a molecular link between these disorders is unknown. Many factors are responsible for brain growth, patterning, and survival, including the insulin-insulin-like growth factor (IGF)-signaling cascades that are mediated by tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. Irs2 signaling mediates peripheral insulin action and pancreatic beta-cell function, and its failure causes diabetes in mice. In this study, we reveal two important roles for Irs2 signaling in the mouse brain. First, disruption of the Irs2 gene reduced neuronal proliferation during development by 50%, which dissociated brain growth from Irs1-dependent body growth. Second, neurofibrillary tangles containing phosphorylated tau accumulated in the hippocampus of old Irs2 knock-out mice, suggesting that Irs2 signaling is neuroprotective. Thus, dysregulation of the Irs2 branch of the insulin-Igf-signaling cascade reveals a molecular link between diabetes and neurodegenerative disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of tris-chloro[2,6-bis(2'-pyridyl)-4-(2'-pyridinium)-1,3,5-triazine]cobalt(II) monohydrate, [Co(C18H13N6)Cl-3]center dot H2O (C2/c (No. 15), a = 7.783(11), b = 22.42(3), c = 11.001(15) angstrom, beta = 90.05(2)degrees), crystallized from the open air reaction of CoCl2 and 2,4,6-tri(2-pyridyl)-1,3,5-triazine in the ionic liquid, N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide is reported. The structure consists of six coordinate cobalt in an octahedral geometry bonded to the tridentate tptz ligand and three chlorines. The non-coordinating pyridyl group in the tptz ligand is protonated (with the protonated nitrogen crystallographically disordered over two possible sites), providing overall charge neutrality for the complex.