990 resultados para 124-770
Resumo:
The crystal and molecular structure of sodium deoxyinosine monophosphate (5'-dIMP) has been determined by x-ray crystallographic methods. The crystals belong to orthorhombic space group P212121, with a = 21.079(5) Aring, b = 9.206(3) Aring and c = 12.770(6) Aring. This deoxynucleotide shows common nucleotide features namely anti conformation about the glycosyl bond, C2' endo pucker for the deoxyribose sugar and gauche-gauche orientation for the phosphate group. The sodium ion is directly coordinated to the O3' atom, a feature observed in many crystal structures of sodium salts of nucleotides.
Resumo:
Diruthenium(II1) compounds, Ru20(02CAr)2(MeCN)4(PPh3)2(C104)(z1~) Hazn0d R U ~ O ( O ~ C A ~ ) ~(2() P(PA~r ~= )P~h,C6H4-p-OMe), were prepared by reacting R U ~ C I ( O ~ CaAnd~ P)P~h 3 in MeCN and characterized by analytical and spectral data. The molecular structures of 1 with Ar = Ph and of 2 with Ar = C&p-OMe were determined by X-ray crystallography. Crystal data for Ru~~(~~CP~)~(M~CN),(PP~(~la)):~ m(oCnIoc~lin,ic), n~/~cH, ~a O= 27.722 (3) A, b = 10.793 (2) A, c = 23.445 ( 2 )A , fi = 124.18 (l)', V = 5803 A3, and 2 = 4. Cr stal data for Ru~O(O~CC~H~-~-O(M2b~): )o~rth(orPhoPm~bi~c, )Pn~n a, a = 22.767 (5) A, b = 22.084 (7) A, c = 12.904 (3) 1, V = 6488 AS; and 2 = 4. Both 1 and 2 have an (Ruz0(02CAr)z2t1 core that is analogous to the diiron core present in the oxidized form of the nonheme respiratory protein hemerythrin. The Ru-Ru distances of 3.237 (1) and 3.199 ( I ) A observed in 1 and 2, respectively, are similar to the M-M distances known in other model systems. The essentially diamagnetic nature of 1 and 2 is due to the presence of two strongly interacting t22 Ru"' centers. The intense colors of 1 (blue) and 2 (purple) are due to the charge-transfer transition involving an ( R ~ ~ ( f i - 0m)o~ie~ty.) The presence of labile MeCN and carboxylato ancillary ligands in I and 2, respectively, makes these systems reactive toward amine and heterocyclic bases.
Resumo:
Former President of Finland Urho Kekkonen was not only a powerful politician but also a well-known sportsman and keep-fit enthusiast. The president’s sports hobbies were covered and celebrated in the media and thus became an integral part of his public persona. This paper looks at Kekkonen’s athletic and able-bodied image and its significance for his power from the perspective of gender. In his exercise activities, Kekkonen was able to display his bodily prowess and demonstrate his version of masculinity, which emphasized both physical and mental strength. The union of mind and muscle in turn buttressed his political ascendancy. Kekkonen’s athletic body served as a cornerstone of his dominance over his country and, simultaneously, as a shield protecting Finland from both internal and external threats. Furthermore, Kekkonen’s sports performances were essential elements in the myth that was created around the president during his term and which was carefully conserved after his fall from power. Drawing upon scholarship on men and masculinities, this paper reassesses the still-effective mythical image of Kekkonen as an invincible superman. The article reveals the performative nature of his athletic activities and shows that in part, his pre-eminence in them was nothing more than theatre enacted by him and his entourage. Thus, Kekkonen’s superior and super-masculine image was actually surprisingly vulnerable and dependent on the success of the performance. The president’s ageing, in particular, demonstrates the fragility of his displays of prowess, strength and masculinity, and shows how fragile the entanglement of body and power can be.
Resumo:
Spironaphthalenones 1b–g on reaction with hydroxylamine hydrochloride gave the expected pyrrolotropones 2b–g. Furanotropone 6, postulated as an intermediate in the formation of pyrrolotropones, remained unchanged on reaction with hydroxylamine hydrochloride in ethanol. Reaction of unsymmetrical spironaphthalenones 1h–o with NH2OH.HCl gave the rearranged pyrrolotropones 2h–o.
Resumo:
Oxovanadium(IV) complexes VO(N-N-N)(N-N)](NO3)(2) (1-4) of (4'-phenyl)-2,2': 6',2 `'-terpyridine (ph-tpy in 1 and 2) or (4'-pyrenyl)-2,2':6',2 `'-terpyridine (py-tpy in 3 and 4) having N-N as 1,10-phenanthroline (phen in 1 and 3) or dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4) are prepared and characterized. The crystal structure of 1 has VO2+ group in VN5O coordination geometry. The terpyridine ligand coordinates in a meridional binding mode. The phen ligand displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo group. The complexes show a d-d band in the range of 710-770 nm in aqueous DMF (4:1 v/v). The complexes exhibit an irreversible V-IV/V-III redox response near -1.0 V vs. SCE in aqueous DMF/0.1 M KCl. The complexes bind to CT DNA giving K-b values within 3.5 x 10(5) to 1.2 x 10(6) M-1. The complexes show poor chemical nuclease activity in dark. Complexes 2-4 show photonuclease activity in UV-A light of 365 nm forming O-1(2) and (OH)-O-center dot. Complex 4 shows DNA photocleavage activity at near-IR light of 785 nm forming (OH)-O-center dot radicals. Complexes 2 and 4 show significant photocytotoxicity in HeLa cancer cells. Uptake of the complexes in HeLa cells, studied by fluorescence imaging, show predominantly cytosolic localization inside the cells.
Resumo:
The concept of one enzyme-one activity had influenced biochemistry for over half a century. Over 1000 enzymes are now described. Many of them are highly 'specific'. Some of them are crystallized and their three-dimensional structures determined. They range from 12 to 1000 kDa in molecular weight and possess 124 to several hundreds of amino acids. They occur as single polypeptides or multiple-subunit proteins. The active sites are assembled on these by appropriate tertiary folding of the polypeptide chain, or by interaction of the constituent subunits. The substrate is held by the side-chains of a few amino acids at the active site on the surface, occupying a tiny fraction of the total area. What is the bulk of the protein behind the active site doing? Do all proteins have only one function each? Why not a protein have more than one active site on its large surface? Will we discover more than one activity for some proteins? These newer possibilities are emerging and are finding experimental support. Some proteins purified to homogeneity using assay methods for different activities are now recognized to have the same molecular weight and a high degree of homology of amino acid sequence. Obviously they are identical. They represent the phenomenon of one protein-many functions.
Resumo:
Tutte (1979) proved that the disconnected spanning subgraphs of a graph can be reconstructed from its vertex deck. This result is used to prove that if we can reconstruct a set of connected graphs from the shuffled edge deck (SED) then the vertex reconstruction conjecture is true. It is proved that a set of connected graphs can be reconstructed from the SED when all the graphs in the set are claw-free or all are P-4-free. Such a problem is also solved for a large subclass of the class of chordal graphs. This subclass contains maximal outerplanar graphs. Finally, two new conjectures, which imply the edge reconstruction conjecture, are presented. Conjecture 1 demands a construction of a stronger k-edge hypomorphism (to be defined later) from the edge hypomorphism. It is well known that the Nash-Williams' theorem applies to a variety of structures. To prove Conjecture 2, we need to incorporate more graph theoretic information in the Nash-Williams' theorem.
Resumo:
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex. We have substituted the wild-type residue at position 13, methionine (Met), with norleucine (Nle), where the only covalent change is the replacement of the sulfur atom with a methylene group. The thermodynamic parameters associated with the binding of this variant to S-protein, determined by titration calorimetry in the temperature range 10-40 degrees C, are reported and compared to values previously reported [Varadarajan, R., Connelly, P. R., Sturtevant, J. M., & Richards, F. M. (1992) Biochemistry 31, 1421-1426] for other position 13 analogs. The differences in the free energy and enthalpy of binding between the Met and Nle peptides are 0.6 and 7.9 kcal/mol at 25 degrees C, respectively. These differences are slightly larger than, but comparable to, the differences in the values for the Met/Ile and Met/Leu pairs. The structure of the mutant complex was determined to 1.85 Angstrom resolution and refined to an R-factor of 17.4% The structures of mutant and wild-type complexes are practically identical although the Nle side chain has a significantly higher average B-factor than the corresponding Met side chain. In contrast, the B-factors of the atoms of the cage of residues surrounding position 13 are all somewhat lower in the Nle variant than in the Met wild-type. Thus, the large differences in the binding enthalpy appear to reside entirely in the difference in chemical properties or dynamic behavior of the -S- and -CH2- groups and not in differences in the geometry of the side chains or the internal cavity surface. In addition, a novel method of obtaining protein stability data by means of isothermal titration calorimetry is introduced.
Resumo:
This paper deals with an experimental study on flexural bond strength of masonry using various blocks in combination with different mortars. Flexural bond strength of masonry has been determined by testing stack-bonded prisms using a modified bond wrench test set-up. The effect of mortar composition and strength on the masonry's. flexural bond strength using three types of masonry units (stabilized mud blocks, stabilized soil-sand blocks and burnt brick) has been examined. The effect of the masonry unit's moisture content on flexural bond strength has also been studied. Increases in mortar strength lead to increased flexural bond strength for cement mortar, irrespective of the type of masonry unit. It has been found that combination mortars, such as soil-cement mortar and cement-lime mortar, lead to better bond strength compared to cement mortars. The moisture content of the masonry unit at the time of casting has displayed significant influence on the flexural bond strength of the masonry. It has been found that for each type of masonry unit, an optimum moisture content exists, beyond which the flexural bond strength falls off quickly.
Resumo:
Ceramic matrix composites of Al2O3-SiC-(Al,Si) have been fabricated by directed melt oxidation of aluminum alloys into SiC particulate preforms. The proportions of Al2O3, alloy, and porosity in the composite can be controlled by proper selection of SLC particle size and the processing temperature. The wear resistance of composites was evaluated in pin-on-disk experiments against a hard steel substrate. Minimum wear rate comparable to conventional ceramics such as ZTA is recorded for the composition containing the highest fraction of alloy, owing to the development of a thin and adherent tribofilm with a low coefficient of friction.
Resumo:
Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.
Resumo:
Phase relations in the system Ca-Pb-O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2Pb, Ca5Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2PbO4 (880 - 1100 K) and Pb3O4 (770 - 910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2PbO4, a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations: 2CaO + PbO +1/2O(2) --> Ca2PbO4 Delta(r)G degrees/J mol(-1) = (- 128340 + 93.21 T/K) +/- 200 3PbO + 1/2O(2) --> Pb3O4 Delta(r)G degrees/J mol(-1) = (- 70060 + 77.5 T/K) +/- 150
Resumo:
Mo3O5(OH)(2)(AsO4)(2) was prepared at 100 degrees C from an aqueous solution of MoO3 containing arsenic and nitric acids. It crystallises in the monoclinic system, a = 13.024(1)Angstrom, b = 7.2974 (2) Angstrom, c = 13.281(1) Angstrom, beta = 121.124(8)degrees, Z = 4, space group C2/c. The structure was determined by Rietveld refinement from X-ray powder diffraction data. The three-dimensional structure is built up from MoO6 and MoO5OH octahedra and AsO4 tetrahedra sharing corners. The octahedra share two opposite vertices forming zigzag chains that run parallel to [10(1) over bar]. Each AsO4 tetrahedron is connected to four octahedra, two of which belong to the same chain, thus linking three chains. The resulting covalent framework is similar to that of beta VOPO4 in which one tetrahedral P site for every three is empty. The two protons are likely to be bonded to two (out of four) unshared oxygen atoms surrounding this empty site. All the Mo atoms are strongly off-centred in the octahedra; and the off-centring is disordered. The disorder is discussed in terms of Mo shifts perturbed by a disordered hydrogen bonding scheme.