986 resultados para 10Me-C16:0
Resumo:
In the epidemiology of infectious diseases, the basic reproduction number, R-0, has a number of important applications, most notably it can be used to predict whether a pathogen is likely to become established, or persist, in a given area. We used the R-0 model to investigate the persistence of 3 tick-borne pathogens; Babesia microti, Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in an Apodemus sylvaticus-Ixodes ricinus system. The persistence of these pathogens was also determined empirically by screening questing ticks and wood mice by PCR. All 3 pathogens behaved differently in response to changes in the proportion of transmission hosts on which I. ricinus fed, the efficiency of transmission between the host and ticks and the abundance of larval and nymphal ticks found on small mammals. Empirical data supported theoretical predictions of the R-0 model. The transmission pathway employed and the duration of systemic infection were also identified as important factors responsible for establishment or persistence of tick-borne pathogens in a given tick-host system. The current study demonstrates how the R-0 model can be put to practical use to investigate factors affecting tick-borne pathogen persistence, which has important implications for animal and human health worldwide.
Resumo:
Short pulses of 100 ps FWHM duration at 1.06 mu m wavelength are used as the pump source for driving the J = 0-1, 19.6 nm, Ne-like germanium X-ray laser. Different combinations of short pulses are investigated and quantitatively compared. Configurations investigated include a single pulse, double pulses at 400 ps and 800 ps separation, single pulses with prepulses and double pulses with prepulses. Data are presented in the form of integrated energy measurements, and supported by modelling. The most efficient short pulse configurations are shown to be orders of magnitude more effective than pumping with nanosecond duration pulses. (C) 1997 Elsevier Science B.V.
Resumo:
We report a study of the effect of prepulses on XUV lasing of Ne-like germanium for an irradiation geometry where approximate to 20 mm long germanium slab targets were irradiated at approximate to 1.6 x 10(13) W cm(-2) using approximate to 0.7 ns (1.06 mu m) pulses from the VULCAN glass laser. Prepulses were generated at fractional power levels of approximate to 2 x 10(-4) (low) and approximate to 2 x 10(-2) (high) and arrived on target 5 and 3.2 ns respectively in advance of the main heating pulse, For both the low and high prepulses the output of the 3p-3s, J = 0-1, line at 19.6 nm was enhanced such that the peak radiant density (J/st) for this line became greater than that for the normally stronger J = 2-1 lines at 23.2 and 23.6 nm. The J = 0-1 line, whose FWHM duration was reduced from approximate to 450 ps to approximate to 100 ps, delivered approximate to 6 x more power (W) than the average for the combined J = 2-1 lines, whose FWHM duration was approximate to 500 ps for both levels of prepulse, The higher prepulse was more effective, yielding approximate to 2 x more radiant density and approximate to 7 x more power on both the J = 0-1 and J = 2-1 transitions compared to the low prepulse case, The most dramatic observation overall was the approximate to 40 x increase of power in the J = 0-1 line for the high prepulse (approximate to 2%) case compared with the zero prepulse case. These observations, coupled with measurements of beam divergence and beam deviation through refractive bending, as well as general agreement with modelling, lead us to conclude that, for germanium, the main influence of the prepulse is (a) to increase the energy absorbed from the main pulse, (b) to increase the volume of the gain zone and (c) to relax the plasma density gradients, particularly in the J = 0-1 gain zone.
Resumo:
Lasing properties of a collisional-excitation Ne-like Ge soft-x-ray laser have been studied with exploding-foil, single-slab, and double-slab targets under identical pumping conditions. Experimental results for the angular intensity distributions and the temporal variations of the lasing intensities are examined with a hydrodynamic code and ray-trace calculations. The observed angular distribution are well reproduced by these analyses, and it is found that the effective gain regions are located on the high-density side of the expected gain regions. It is shown that the observed lasing intensity of the J = 0 to J = 1 line is strongly correlated with the temporal change of the calculated electron temperature for both the slab and the exploding-foil targets.
STUDY OF THE DYNAMICS OF ABLATIVE IMPLOSIONS DRIVEN BY 0.53 MU-M LASER-RADIATION USING X-RADIOGRAPHY
Resumo:
We report measurements of ultrahigh magnetic fields produced during intense (similar to10(20) Wcm(-2) mum(2)) laser interaction experiments with solids. We show that polarization measurements of high-order vuv laser harmonics generated during the interaction (up to the 15th order) suggest the existence of magnetic field strengths of 0.7+/-0.1 GG in the overdense plasma. Measurements using higher order harmonics indicate that denser regions of the plasma can be probed. This technique may be useful for measurements of multi-GG level magnetic fields which are predicted to occur at even higher intensities.