979 resultados para zeros of Hermite polynomials
Resumo:
A new method for fitting a series of Zernike polynomials to point clouds defined over connected domains of arbitrary shape defined within the unit circle is presented in this work. The method is based on the application of machine learning fitting techniques by constructing an extended training set in order to ensure the smooth variation of local curvature over the whole domain. Therefore this technique is best suited for fitting points corresponding to ophthalmic lenses surfaces, particularly progressive power ones, in non-regular domains. We have tested our method by fitting numerical and real surfaces reaching an accuracy of 1 micron in elevation and 0.1 D in local curvature in agreement with the customary tolerances in the ophthalmic manufacturing industry.
Resumo:
This paper proves that every zero of any n th , n ≥ 2, partial sum of the Riemann zeta function provides a vector space of basic solutions of the functional equation f(x)+f(2x)+⋯+f(nx)=0,x∈R . The continuity of the solutions depends on the sign of the real part of each zero.
Resumo:
"Supported in part by contract U.S. AEC AT(11-1) 1469 and grant NSF-6J-217".
Resumo:
Bibliography: p. 24.
Resumo:
∗ Research partially supported by INTAS grant 97-1644
Resumo:
* The author was supported by NSF Grant No. DMS 9706883.
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C45
Resumo:
2000 Mathematics Subject Classification: Primary 34C07, secondary 34C08.
Resumo:
2002 Mathematics Subject Classification: Primary 35В05; Secondary 35L15
Resumo:
In 1917 Pell (1) and Gordon used sylvester2, Sylvester’s little known and hardly ever used matrix of 1853, to compute(2) the coefficients of a Sturmian remainder — obtained in applying in Q[x], Sturm’s algorithm on two polynomials f, g ∈ Z[x] of degree n — in terms of the determinants (3) of the corresponding submatrices of sylvester2. Thus, they solved a problem that had eluded both J. J. Sylvester, in 1853, and E. B. Van Vleck, in 1900. (4) In this paper we extend the work by Pell and Gordon and show how to compute (2) the coefficients of an Euclidean remainder — obtained in finding in Q[x], the greatest common divisor of f, g ∈ Z[x] of degree n — in terms of the determinants (5) of the corresponding submatrices of sylvester1, Sylvester’s widely known and used matrix of 1840. (1) See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for her biography (2) Both for complete and incomplete sequences, as defined in the sequel. (3) Also known as modified subresultants. (4) Using determinants Sylvester and Van Vleck were able to compute the coefficients of Sturmian remainders only for the case of complete sequences. (5) Also known as (proper) subresultants.
Resumo:
2000 Mathematics Subject Classification: 30B40, 30B10, 30C15, 31A15.
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32
Resumo:
In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopted is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally, three applications to GARCH and realized volatility models are presented.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)