990 resultados para weak key-IV combinations
Resumo:
Context. The first soft gamma-ray repeater was discovered over three decades ago, and was subsequently identified as a magnetar, a class of highly magnetised neutron star. It has been hypothesised that these stars power some of the brightest supernovae known, and that they may form the central engines of some long duration gamma-ray bursts. However there is currently no consenus on the formation channel(s) of these objects. Aims. The presence of a magnetar in the starburst cluster Westerlund 1 implies a progenitor with a mass ≥40 M⊙, which favours its formation in a binary that was disrupted at supernova. To test this hypothesis we conducted a search for the putative pre-SN companion. Methods. This was accomplished via a radial velocity survey to identify high-velocity runaways, with subsequent non-LTE model atmosphere analysis of the resultant candidate, Wd1-5. Results. Wd1-5 closely resembles the primaries in the short-period binaries, Wd1-13 and 44, suggesting a similar evolutionary history, although it currently appears single. It is overluminous for its spectroscopic mass and we find evidence of He- and N-enrichement, O-depletion, and critically C-enrichment, a combination of properties that is difficult to explain under single star evolutionary paradigms. We infer a pre-SN history for Wd1-5 which supposes an initial close binary comprising two stars of comparable (~ 41 M⊙ + 35 M⊙) masses. Efficient mass transfer from the initially more massive component leads to the mass-gainer evolving more rapidly, initiating luminous blue variable/common envelope evolution. Reverse, wind-driven mass transfer during its subsequent WC Wolf-Rayet phase leads to the carbon pollution of Wd1-5, before a type Ibc supernova disrupts the binary system. Under the assumption of a physical association between Wd1-5 and J1647-45, the secondary is identified as the magnetar progenitor; its common envelope evolutionary phase prevents spin-down of its core prior to SN and the seed magnetic field for the magnetar forms either in this phase or during the earlier episode of mass transfer in which it was spun-up. Conclusions. Our results suggest that binarity is a key ingredient in the formation of at least a subset of magnetars by preventing spin-down via core-coupling and potentially generating a seed magnetic field. The apparent formation of a magnetar in a Type Ibc supernova is consistent with recent suggestions that superluminous Type Ibc supernovae are powered by the rapid spin-down of these objects.
Resumo:
We realize an end-to-end no-switching quantum key distribution protocol using continuous-wave coherent light. We encode weak broadband Gaussian modulations onto the amplitude and phase quadratures of light beams. Our no-switching protocol achieves high secret key rate via a post-selection protocol that utilizes both quadrature information simultaneously. We establish a secret key rate of 25 Mbits/s for a lossless channel and 1 kbit/s for 90% channel loss, per 17 MHz of detected bandwidth, assuming individual Gaussian eavesdropping attacks. Since our scheme is truly broadband, it can potentially deliver orders of magnitude higher key rates by extending the encoding bandwidth with higher-end telecommunication technology.
Resumo:
Background: The multitude of motif detection algorithms developed to date have largely focused on the detection of patterns in primary sequence. Since sequence-dependent DNA structure and flexibility may also play a role in protein-DNA interactions, the simultaneous exploration of sequence-and structure-based hypotheses about the composition of binding sites and the ordering of features in a regulatory region should be considered as well. The consideration of structural features requires the development of new detection tools that can deal with data types other than primary sequence. Results: GANN ( available at http://bioinformatics.org.au/gann) is a machine learning tool for the detection of conserved features in DNA. The software suite contains programs to extract different regions of genomic DNA from flat files and convert these sequences to indices that reflect sequence and structural composition or the presence of specific protein binding sites. The machine learning component allows the classification of different types of sequences based on subsamples of these indices, and can identify the best combinations of indices and machine learning architecture for sequence discrimination. Another key feature of GANN is the replicated splitting of data into training and test sets, and the implementation of negative controls. In validation experiments, GANN successfully merged important sequence and structural features to yield good predictive models for synthetic and real regulatory regions. Conclusion: GANN is a flexible tool that can search through large sets of sequence and structural feature combinations to identify those that best characterize a set of sequences.
Resumo:
Ant Colony Optimisation algorithms mimic the way ants use pheromones for marking paths to important locations. Pheromone traces are followed and reinforced by other ants, but also evaporate over time. As a consequence, optimal paths attract more pheromone, whilst the less useful paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect features of objects represented as nodes within graph space. Each node has one or more ants assigned to each feature. Ants attempt to locate nodes with matching feature values, depositing pheromone traces on the way. This use of multiple pheromone values is a key innovation. Ants record other ant encounters, keeping a record of the features and colony membership of ants. The recorded values determine when ants should combine their features to look for conjunctions and whether they should merge into colonies. This ability to detect and deposit pheromone representative of feature combinations, and the resulting colony formation, renders the algorithm a powerful clustering tool. The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii) ants roam the graph space searching for nodes with matching features; (iii) when departing matching nodes, ants deposit pheromones to inform other ants that the path goes to a node with the associated feature values; (iv) ant feature encounters are counted each time an ant arrives at a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi) a similar mechanism is used for colony merging. The model varies from traditional ACO in that: (i) a modified pheromone-driven movement mechanism is used; (ii) ants learn feature combinations and deposit multiple pheromone scents accordingly; (iii) ants merge into colonies, the basis of cluster formation. The MPACA is evaluated over synthetic and real-world datasets and its performance compares favourably with alternative approaches.
Resumo:
Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.
Resumo:
Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.
Resumo:
International audience