864 resultados para vegetation condition
Resumo:
The demand for high quality rail services in the twenty-first century has put an ever increasing demand on all rail operators. In order to meet the expectation of their patrons, the maintenance regime of railway systems has to be tightened up, the track conditions have to be well looked after, the rolling stock must be designed to withstand heavy duty. In short, in an ideal world where resources are unlimited, one needs to implement a very rigorous inspection regime in order to take care of the modem needs of a railway system [1]. If cost were not an issue, the maintenance engineers could inspect the train body by the most up-to-date techniques such as ultra-sound examination, x-ray inspection, magnetic particle inspection, etc. on a regular basis. However it is inconceivable to have such a perfect maintenance regime in any commercial railway. Likewise, it is impossible to have a perfect rolling stock which can weather all the heavy duties experienced in a modem railway. Hence it is essential that some condition monitoring schemes are devised to pick up potential defects which could manifest into safety hazards. This paper introduces an innovative condition monitoring system for track profile and, together with an instrumented car to carry out surveillance of the track, will provide a comprehensive railway condition monitoring system which is free from the usual difficulty of electromagnetic compatibility issues in a typical railway environment
Resumo:
This paper discusses diesel engine condition monitoring (CM) using acoustic emissions (AE) as well as some of the commonly encountered diesel engine problems. Also discussed are some of the underlying combustion related faults and the methods used in past studies to simulate diesel engine faults. The initial test involved an experimental simulation of two common combustion related diesel engine faults, namely diesel knock and misfire. These simulated faults represent the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank angle encoder and top-dead centre (TDC) signals. Using these signals, it was possible to characterise the effect of different combustion conditions and hence, various diesel engine in-cylinder pressure profiles.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.
Resumo:
A good object representation or object descriptor is one of the key issues in object based image analysis. To effectively fuse color and texture as a unified descriptor at object level, this paper presents a novel method for feature fusion. Color histogram and the uniform local binary patterns are extracted from arbitrary-shaped image-objects, and kernel principal component analysis (kernel PCA) is employed to find nonlinear relationships of the extracted color and texture features. The maximum likelihood approach is used to estimate the intrinsic dimensionality, which is then used as a criterion for automatic selection of optimal feature set from the fused feature. The proposed method is evaluated using SVM as the benchmark classifier and is applied to object-based vegetation species classification using high spatial resolution aerial imagery. Experimental results demonstrate that great improvement can be achieved by using proposed feature fusion method.
Resumo:
Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
This paper discusses diesel engine condition monitoring (CM) using acoustic emissions (AE)as well as some of the commonly encountered diesel engine problems. Also discussed are some of the underlying combustion related faults and the methods used in past studies to simulate diesel engine faults. The initial test involved an experimental simulation of two common combustion related diesel engine faults, namely diesel knock and misfire. These simulated faults represent the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank angle encoder and top-dead centre (TDC) signals. Using these signals, it was possible to characterise the effect of different combustion conditions and hence, various diesel engine in-cylinder pressure profiles.
Resumo:
This paper presents an overview of the CRC for Infrastructure and Engineering Asset Management (CIEAM)’s rotating machine health monitoring project and the status of the research progress. The project focuses on the development of a comprehensive diagnostic tool for condition monitoring and systematic analysis of rotating machinery. Particularly attention focuses on the machine health monitoring of diesel engines, compressors and pumps by using acoustic emission and vibration-based monitoring techniques. The paper also provides a brief summary of the work done by the three main research collaborating partners in the project, namely, Queensland University of Technology (QUT), Curtin University of Technology (CUT) and the University of Western Australia (UWA). Preliminary test and analysis results from this work are also reported in the paper
Resumo:
Variable Speed Limits (VSL) is a control tool of Intelligent Transportation Systems (ITS) which can enhance traffic safety and which has the potential to contribute to traffic efficiency. This study presents the results of a calibration and operational analysis of a candidate VSL algorithm for high flow conditions on an urban motorway of Queensland, Australia. The analysis was done using a framework consisting of a microscopic simulation model combined with runtime API and a proposed efficiency index. The operational analysis includes impacts on speed-flow curve, travel time, speed deviation, fuel consumption and emission.
Resumo:
A recent decision of the Queensland Supreme Court (McMurdo J) raises matters of interest for practitioners undertaking conveyancing. Woodward v Nagel [2003] QSC 100 was delivered on 11 April 2003.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.