977 resultados para topological insulator
Resumo:
It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.
Resumo:
LaMnO3+? samples with Mn4+ content up to 50% have been prepared by different methods. The structure of LaMnO3+? changes from orthorhombic to cubic (via rhombohedral) with increase in the Mn4+ content. LaMnO3+? samples containing greater than 20% Mn4+ are ferromagnetic and show resistivity maxima at a temperature Tt which is close to the ferromagnetic Curie temperature. The resistivity maximum is due to the occurrence of a metal-insulator transition. In samples heated to the same temperature, the value of Tt increases with % Mn4+. For a given sample, Tt increases with the temperature of heat treatment due to the increase in particle size. The onset of ferromagnetism in LaMnO3+? accompanied by an insulator-metal transition is similar to that found in La1-xCaxMnO3 and La1-xSrxCoO3.
Resumo:
We report experimental observations of a new mechanism of charge transport in two-dimensional electron systems (2DESs) in the presence of strong Coulomb interaction and disorder. We show that at low enough temperature the conductivity tends to zero at a nonzero carrier density, which represents the point of essential singularity in a Berezinskii-Kosterlitz-Thouless-like transition. Our experiments with many 2DESs in GaAs/AlGaAs heterostructures suggest that the charge transport at low carrier densities is due to the melting of an underlying ordered ground state through proliferation of topological defects. Independent measurement of low-frequency conductivity noise supports this scenario.
Resumo:
We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010
Resumo:
An interdiffusion study is conducted on the Co-W system by a diffusion couple technique. The interdiffusion coefficient of the Co(W) solid solution and the Co7W6 mu phase is determined. The activation energy is found to increase with the W content of the Co(W) solid solution. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We propose that strong fluorescence in conjugated polymers requires a dipole-allowed state to be the lowest singlet. Hückel theory for para-conjugated phenyl rings yields an extended, topologically one-dimensional ?-system with increased alternation, states localized on each ring, and charge-transfer excitations between them. Exact Pariser�Parr�Pople results and molecular spectra for oligomers support a topological contribution and a lowest dipole-allowed singlet in phenylene polymers.
Resumo:
We discuss briefly some of the basic issues involved in the field of metal-insulator transition. We point out why this area is a profitable area of research. We also suggest certain definite action plan for this area in particular and the area of low temperature solid state physics in general.
Resumo:
We discuss briefly some of the basic issues involved in the field of metal-insulator transition. We point out why this area is a profitable area of research. We also suggest certain definite action plan for this area in particular and the area of low temperature solid state physics in general.
Resumo:
Bremsstrahlung isochromat spectroscopy (BIS) along with ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) has been employed to investigate the electron states of Pd and Ag deposited on amorphous graphite at different coverages. The metal core level binding energies increase with decreasing cluster size while the UPS valence bands show a decrease in the 4d states at E(F) accompanied by a shift in the intensity maximum to higher binding energies. BIS measurements show the emergence of new states closer to E(F) with increase in the cluster size. It is pointed out that the observed spectral shifts cannot be accounted for by final-state effects alone and that initial-state effects have a significant role. It therefore appears that a decrease in cluster size is accompanied by a metal-insulator transition.
Resumo:
The first fabrication of self-doped La1-xMnO3-delta films which are unique among the other La(1-x)M(x)MnO(3) (M = Ca, Ba and Pb) thin films showing giant magnetoresistance is reported. Ag-doped La0.7MnO3-delta films were grown on LaAlO3[100] substrates. These films show ferromagnetic and metal-insulator transition at 220 K and exhibit giant magnetoresistance (GMR) with Delta R/R(o) = 85% and Delta R/R(H) > 550%. Without silver addition these self-doped films are non-magnetic, Enhancement in GMR up to 8% has been observed in superlattices having alternate magnetic and non-magnetic La1-xMnO3-delta layers.
Resumo:
Styryl coumarins generally yield centrosymmetric (alpha-mode, anti-HT) photodimers when subjected to irradiation in the solid state, However, the substitution of fluorine dramatically alters the packing mode and steers the molecules 4-(4-fluorostyryl)coumarin 1 and 4-(2-fluorostyryl)coumarin 2 to form a stereospecific photodimer, beta-mode, syn-HH across the styrenic double bond (yield 78-85%). The stereochemistry of the photodimer 2a has been established by X-ray crystallography. There is no evidence for the presence of C-H ... F interactions. The true nature of the weak atom-atom interactions called into play when fluorine is substituted is not clear, It is observed that the fluoro substituted compounds have greater crystal density than the corresponding unsubstituted ones.
Resumo:
Using the d=infinity or local-approximation approach to the half-filled Hubbard model on a compressible lattice, we present a detailed study of the transport and structural properties near the paramagnetic metal-insulator transition. The results describe qualitatively most of the observed data in V2O3, including the metal-insulator-metal crossover [Kuwamoto et al., Phys. Rev. B 22, 2626 (1980)]. In addition, we discuss an interesting and intrinsic reentrance feature in the resistivity of the half-filled Hubbard model at high temperatures.
Resumo:
In this paper we have investigated the composition-driven metal-insulator (MI) transitions in two ABO3 classes of perovskite oxides (LaNixCo1-xO3 and NaxTayW1-yO3) in the composition range close to the critical region by using the tunneling technique. Two types of junctions (point-contact and planar) have been used for the investigation covering the temperature range 0.4 K
Resumo:
Two topical subjects related with the effect of magnetic field on electrical conduction and the metal-insulator transition are discussed. The first topic is an electronic phase transition in graphite, which is interpreted as a manifestation of a nestingtype instability inherent to a one-dimensional narrow Landau sub-band. The second topic is spin-dependent tranport in III-V based diluted magnetic semiconductors; in particular, a large negative magnetoresistance observed in the vicinity of metal-nonmetal transition.