942 resultados para structure-property
Resumo:
Die organische Halbleitertechnologie befindet sich seit Jahrzehnten im Focus des Interesses, da sie eine kostengünstige und umweltverträgliche Alternative zu anorganischen Silizium-basierten Halbleitern darstellt. Die Möglichkeit der gezielten Funktionalisierung von definierten Strukturen durch synthetische Methoden, welche eine große Vielfalt an Materialien ermöglicht, steht dabei besonders im Vordergrund. Die Modifikation von physikalischen Eigenschaften ermöglicht dabei eine stark erleichterte Anpassung für den geplanten Anwendungsbereich. Im Rahmen der vorliegenden Dissertation wurden organische Halbleitermaterialien basierend auf Cyclopenta[2,1-b:3,4-b']dithiophen (CDT) dargestellt und hinsichtlich ihrer strukturellen und elektronischen Eigenschaften untersucht. In Kombination mit Benzo[c][1,2,5]thiadiazol (BTZ) und weiteren Akzeptoren wurden zunächst Donor(D)-Akzeptor(A)-Polymere synthetisiert und Struktur-Eigenschaft-Beziehungen aufgestellt. So konnte ein sehr hochmolekulares Polymer CDT-BTZ-Polymer (Mn = 36 kg mol-1, PDI = 2.6) erhalten werden, welches sich durch eine hohe lamellare Ordnung und eine gemessene Ladungsträgermobilität in FETs von über 5.0 cm2V-1s-1 bei Raumtemperatur auszeichnete; bei niedrigen Temperaturen (240 K) war letztgenannte 6.5 cm2V-1s-1. Aufgrund dieses hohen Ladungstransports und der Abwesenheit niedermolekularer Polymerketten innerhalb des Polymers konnte erstmals eine Messung eines HALL-Effektes bewerkstelligt werden. Dies war der erste Beweis eines Band-artigen Ladungstransportes an einem Polymerhalbleiter. Des Weiteren wurde durch synthetische Veränderung der Grundstruktur des Polymers zu längeren Alkylketten eine anisotrope Anordnung der Polymerketten erreicht und die Ladungsträgermobilität (6.5 cm2V-1s-1 bei Raumtemperatur) weiter gesteigert. Darauf aufbauend wurde der Einfluss von stereoisomeren Seitenketten an CDT-BTZ-Polymeren auf Packungsverhalten, Parametern (Sperrstrom, Einschaltstrom) in FETs und Löslichkeit in organischen Lösungsmitteln untersucht. Durch cis-trans-Isomerisierung der Seitenketten wurde hier eine neue Methode zur Optimierung des Packungsverhaltens von Polymeren in dünnen Filmen und Lösung gefunden. Zuletzt wurden D-π-A-Farbstoffen, welche CDT als Verbrückungseinheit (π) beinhalten, dargestellt. Durch Variation von D und A konnten Struktur-Eigenschaft-Beziehungen in der Anwendung in Solarzellen (Feststoffsolarzellen, Flüssigsolarzellen) gefunden werden. Die Untersuchungen der photoinduzierten Absorption und der Photolumisenzenzquantenausbeute lieferten dabei Erklärungen für physikalische Prozesse wie Ladungsinjektion- und rekombination.
Resumo:
Thermoelektrizität beschreibt die reversible Beeinflussung und Wechselwirkung von Elektrizität und Temperatur T in Systemen abseits des thermischen Gleichgewichtes. In diesen führt ein Temperaturgradient entlang eines thermoelektrischen Materials zu einem kontinuierlichen Ungleichgewicht in der Energieverteilung der Ladungsträger. Dies hat einen Diffusionsstrom der energiereichen Ladungsträger zum kalten Ende und der energiearmen Ladungsträger zum heißen Ende zur Folge. Da in offenen Stromkreisen kein Strom fließt, wird ein Ungleichgewicht der Ströme über das Ausbilden eines elektrischen Feldes kompensiert. Die dadurch entstehende Spannung wird als Seebeck Spannung bezeichnet. Über einen geeigneten Verbraucher, folgend aus dem Ohm'schen Gesetz, kann nun ein Strom fließen und elektrische Energie gewonnen werden. Den umgekehrten Fall beschreibt der sogenannte Peltier Effekt, bei dem ein Stromfluss durch zwei unterschiedliche miteinander verbundene Materialien ein Erwärmen oder Abkühlen der Kontaktstelle zur Folge hat. Die Effizienz eines thermoelektrischen Materials kann über die dimensionslose Größe ZT=S^2*sigma/kappa*T charakterisiert werden. Diese setzt sich zusammen aus den materialspezifischen Größen der elektrischen Leitfähigkeit sigma, der thermischen Leitfähigkeit kappa und dem Seebeck Koeffizienten S als Maß der erzeugten Spannung bei gegebener Temperaturdifferenz. Diese Arbeit verfolgt den Ansatz glaskeramische Materialien mit thermoelektrischen Kristallphasen zu synthetisieren, sie strukturell zu charakterisieren und ihre thermoelektrischen Eigenschaften zu messen, um eine Struktur-Eigenschaft Korrelation zu erarbeiten. Hierbei werden im Detail eine elektronenleitende (Hauptphase SrTi_xNb_{1-x}O_3) sowie eine löcherleitende Glaskeramik (Hauptphase Bi_2Sr_2Co_2O_y) untersucht. Unter dem Begriff Glaskeramiken sind teilkristalline Materialien zu verstehen, die aus Glasschmelzen durch gesteuerte Kristallisation hergestellt werden können. Über den Grad der Kristallisation und die Art der ausgeschiedenen Spezies an Kristallen lassen sich die physikalischen Eigenschaften dieser Systeme gezielt beeinflussen. Glaskeramiken bieten, verursacht durch ihre Restglasphase, eine niedrige thermische Leitfähigkeit und die Fermi Energie lässt sich durch Dotierungen in Richtung des Leitungs- oder Valenzbands verschieben. Ebenso besitzen glaskeramische Materialien durch ihre Porenfreiheit verbesserte mechanische Eigenschaften gegenüber Keramiken und sind weniger anfällig für den Einfluss des Sauerstoffpartialdruckes p_{O_2} auf die Parameter. Ein glaskeramisches und ein gemischt keramisch/glaskeramisches thermoelektrisches Modul aus den entwickelten Materialien werden konzipiert, präpariert, kontaktiert und bezüglich ihrer Leistung vermessen.
Resumo:
In this work the synthesis of polyarylated cycloparaphenylenes (CPPs) is described in order to form structurally defined carbon nanotube (CNT) segments by the Scholl reaction. Therefore, polyphenylene macrocycles in different sizes and substitution patterns were synthesized. The influence of the ring-strain on the oxidative cyclodehydrogenation of these macrocycles towards CNT segments was investigated. It was demonstrated that a selective solution based bottom-up synthesis of CNT segments could be accomplished, having polyarylated CPPs, sufficient in size and with the right substituents at the critical positions. These findings mark an important step towards the bottom-up synthesis of length- and diameter defined ultrashort CNTsrnIn the second part of this work, novel non-precious metal catalysts (NPMCs) based on phenanthroline-indole macrocycles were synthesized and their electrocatalytic performance in the cathodic oxygen reduction was investigated. It could be demonstrated that all catalysts contributed to the direct 4-electron reduction of oxygen to water in alkaline media and a superior long-term stability was observed. Since these NPMCs are not heat pre-treated, the catalytically active site was structurally well-defined, allowing the investigation of the structure-property relationship. Moreover, it could be shown that these novel NPMCs act as efficient ORR catalysts and could replace the expensive and scarce platinum in fuel cell applications.rn
Resumo:
Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.
Resumo:
“Por lo tanto, la cristalización de polímeros se supone, y en las teorías se describe a menudo, como un proceso de múltiples pasos con muchos aspectos físico-químicos y estructurales influyendo en él. Debido a la propia estructura de la cadena, es fácil entender que un proceso que es termodinámicamente forzado a aumentar su ordenamiento local, se vea obstaculizado geométricamente y, por tanto, no puede conducirse a un estado de equilibrio final. Como resultado, se forman habitualmente estructuras de no equilibrio con diferentes características dependiendo de la temperatura, presión, cizallamiento y otros parámetros físico-químicos del sistema”. Estas palabras, pronunciadas recientemente por el profesor Bernhard Wunderlich, uno de los mas relevantes fisico-quimicos que han abordado en las ultimas décadas el estudio del estado físico de las macromoléculas, adelantan lo que de alguna manera se explicita en esta memoria y constituyen el “leitmotiv” de este trabajo de tesis. El mecanismo de la cristalización de polímeros esta aun bajo debate en la comunidad de la física de polímeros y la mayoría de los abordajes experimentales se explican a través de la teoría LH. Esta teoría clásica debida a Lauritzen y Hoffman (LH), y que es una generalización de la teoría de cristalización de una molécula pequeña desde la fase de vapor, describe satisfactoriamente muchas observaciones experimentales aunque esta lejos de explicar el complejo fenómeno de la cristalización de polímeros. De hecho, la formulación original de esta teoría en el National Bureau of Standards, a comienzos de la década de los 70, sufrió varias reformulaciones importantes a lo largo de la década de los 80, buscando su adaptación a los hallazgos experimentales. Así nació el régimen III de cristalización que posibilita la creacion de nichos moleculares en la superficie y que dio pie al paradigma ofrecido por Sadler y col., para justificar los experimentos que se obtenian por “scattering” de neutrones y otras técnicas como la técnica de “droplets” o enfriamiento rapido. Por encima de todo, el gran éxito de la teoría radica en que explica la dependencia inversa entre el tamaño del plegado molecular y el subenfriamiento, definido este ultimo como el intervalo de temperatura que media entre la temperatura de equilibrio y la temperatura de cristalización. El problema concreto que aborda esta tesis es el estudio de los procesos de ordenamiento de poliolefinas con distinto grado de ramificacion mediante simulaciones numéricas. Los copolimeros estudiados en esta tesis se consideran materiales modelo de gran homogeneidad molecular desde el punto de vista de la distribución de tamaños y de ramificaciones en la cadena polimérica. Se eligieron estas poliolefinas debido al gran interes experimental en conocer el cambio en las propiedades fisicas de los materiales dependiendo del tipo y cantidad de comonomero utilizado. Además, son modelos sobre los que existen una ingente cantidad de información experimental, que es algo que preocupa siempre al crear una realidad virtual como es la simulación. La experiencia en el grupo Biophym es que los resultados de simulación deben de tener siempre un correlato mas o menos próximo experimental y ese argumento se maneja a lo largo de esta memoria. Empíricamente, se conoce muy bien que las propiedades físicas de las poliolefinas, en suma dependen del tipo y de la cantidad de ramificaciones que presenta el material polimérico. Sin embargo, tal como se ha explicado no existen modelos teóricos adecuados que expliquen los mecanismos subyacentes de los efectos de las ramas. La memoria de este trabajo es amplia por la complejidad del tema. Se inicia con una extensa introducción sobre los conceptos básicos de una macromolecula que son relevantes para entender el contenido del resto de la memoria. Se definen los conceptos de macromolecula flexible, distribuciones y momentos, y su comportamiento en disolución y fundido con los correspondientes parametros caracteristicos. Se pone especial énfasis en el concepto de “entanglement” o enmaranamiento por considerarse clave a la hora de tratar macromoléculas con una longitud superior a la longitud critica de enmaranamiento. Finaliza esta introducción con una reseña sobre el estado del arte en la simulación de los procesos de cristalización. En un segundo capitulo del trabajo se expone detalladamente la metodología usada en cada grupo de casos. En el primer capitulo de resultados, se discuten los estudios de simulación en disolución diluida para sistemas lineales y ramificados de cadena única. Este caso mas simple depende claramente del potencial de torsión elegido tal como se discute a lo largo del texto. La formación de los núcleos “babys” propuestos por Muthukumar parece que son consecuencia del potencial de torsión, ya que este facilita los estados de torsión mas estables. Así que se propone el análisis de otros potenciales que son igualmente utilizados y los resultados obtenidos sobre la cristalización, discutidos en consecuencia. Seguidamente, en un segundo capitulo de resultados se estudian moleculas de alcanos de cadena larga lineales y ramificados en un fundido por simulaciones atomisticas como un modelo de polietileno. Los resultados atomisticos pese a ser de gran detalle no logran captar en su totalidad los efectos experimentales que se observan en los fundidos subenfriados en su etapa previa al estado ordenado. Por esta razon se discuten en los capítulos 3 y 4 de resultados sistemas de cadenas cortas y largas utilizando dos modelos de grano grueso (CG-PVA y CG-PE). El modelo CG-PE se desarrollo durante la tesis. El uso de modelos de grano grueso garantiza una mayor eficiencia computacional con respecto a los modelos atomísticos y son suficientes para mostrar los fenómenos a la escala relevante para la cristalización. En todos estos estudios mencionados se sigue la evolución de los procesos de ordenamiento y de fusión en simulaciones de relajación isoterma y no isoterma. Como resultado de los modelos de simulación, se han evaluado distintas propiedades fisicas como la longitud de segmento ordenado, la cristalinidad, temperaturas de fusion/cristalizacion, etc., lo que permite una comparación con los resultados experimentales. Se demuestra claramente que los sistemas ramificados retrasan y dificultan el orden de la cadena polimérica y por tanto, las regiones cristalinas ordenadas decrecen al crecer las ramas. Como una conclusión general parece mostrarse una tendencia a la formación de estructuras localmente ordenadas que crecen como bloques para completar el espacio de cristalización que puede alcanzarse a una temperatura y a una escala de tiempo determinada. Finalmente hay que señalar que los efectos observados, estan en concordancia con otros resultados tanto teoricos/simulacion como experimentales discutidos a lo largo de esta memoria. Su resumen se muestra en un capitulo de conclusiones y líneas futuras de investigación que se abren como consecuencia de esta memoria. Hay que mencionar que el ritmo de investigación se ha acentuado notablemente en el ultimo ano de trabajo, en parte debido a las ventajas notables obtenidas por el uso de la metodología de grano grueso que pese a ser muy importante para esta memoria no repercute fácilmente en trabajos publicables. Todo ello justifica que gran parte de los resultados esten en fase de publicación. Abstract “Polymer crystallization is therefore assumed, and in theories often described, to be a multi step process with many influencing aspects. Because of the chain structure, it is easy to understand that a process which is thermodynamically forced to increase local ordering but is geometrically hindered cannot proceed into a final equilibrium state. As a result, nonequilibrium structures with different characteristics are usually formed, which depend on temperature, pressure, shearing and other parameters”. These words, recently written by Professor Bernhard Wunderlich, one of the most prominent researchers in polymer physics, put somehow in value the "leitmotiv "of this thesis. The crystallization mechanism of polymers is still under debate in the physics community and most of the experimental findings are still explained by invoking the LH theory. This classical theory, which was initially formulated by Lauritzen and Hoffman (LH), is indeed a generalization of the crystallization theory for small molecules from the vapor phase. Even though it describes satisfactorily many experimental observations, it is far from explaining the complex phenomenon of polymer crystallization. This theory was firstly devised in the early 70s at the National Bureau of Standards. It was successively reformulated along the 80s to fit the experimental findings. Thus, the crystallization regime III was introduced into the theory in order to explain the results found in neutron scattering, droplet or quenching experiments. This concept defines the roughness of the crystallization surface leading to the paradigm proposed by Sadler et al. The great success of this theory is the ability to explain the inverse dependence of the molecular folding size on the supercooling, the latter defined as the temperature interval between the equilibrium temperature and the crystallization temperature. The main scope of this thesis is the study of ordering processes in polyolefins with different degree of branching by using computer simulations. The copolymers studied along this work are considered materials of high molecular homogeneity, from the point of view of both size and branching distributions of the polymer chain. These polyolefins were selected due to the great interest to understand their structure– property relationships. It is important to note that there is a vast amount of experimental data concerning these materials, which is essential to create a virtual reality as is the simulation. The Biophym research group has a wide experience in the correlation between simulation data and experimental results, being this idea highly alive along this work. Empirically, it is well-known that the physical properties of the polyolefins depend on the type and amount of branches presented in the polymeric material. However, there are not suitable models to explain the underlying mechanisms associated to branching. This report is extensive due to the complexity of the topic under study. It begins with a general introduction to the basics concepts of macromolecular physics. This chapter is relevant to understand the content of the present document. Some concepts are defined along this section, among others the flexibility of macromolecules, size distributions and moments, and the behavior in solution and melt along with their corresponding characteristic parameters. Special emphasis is placed on the concept of "entanglement" which is a key item when dealing with macromolecules having a molecular size greater than the critical entanglement length. The introduction finishes with a review of the state of art on the simulation of crystallization processes. The second chapter of the thesis describes, in detail, the computational methodology used in each study. In the first results section, we discuss the simulation studies in dilute solution for linear and short chain branched single chain models. The simplest case is clearly dependent on the selected torsion potential as it is discussed throughout the text. For example, the formation of baby nuclei proposed by Mutukhumar seems to result from the effects of the torsion potential. Thus, we propose the analysis of other torsion potentials that are also used by other research groups. The results obtained on crystallization processes are accordingly discussed. Then, in a second results section, we study linear and branched long-chain alkane molecules in a melt by atomistic simulations as a polyethylene-like model. In spite of the great detail given by atomistic simulations, they are not able to fully capture the experimental facts observed in supercooled melts, in particular the pre-ordered states. For this reason, we discuss short and long chains systems using two coarse-grained models (CG-PVA and CG-PE) in section 3 and 4 of chapter 2. The CG-PE model was developed during the thesis. The use of coarse-grained models ensures greater computational efficiency with respect to atomistic models and is enough to show the relevant scale phenomena for crystallization. In all the analysis we follow the evolution of the ordering and melting processes by both isothermal and non isothermal simulations. During this thesis we have obtained different physical properties such as stem length, crystallinity, melting/crystallization temperatures, and so on. We show that branches in the chains cause a delay in the crystallization and hinder the ordering of the polymer chain. Therefore, crystalline regions decrease in size as branching increases. As a general conclusion, it seems that there is a tendency in the macromolecular systems to form ordered structures, which can grown locally as blocks, occupying the crystallization space at a given temperature and time scale. Finally it should be noted that the observed effects are consistent with both, other theoretical/simulation and experimental results. The summary is provided in the conclusions chapter along with future research lines that open as result of this report. It should be mentioned that the research work has speeded up markedly in the last year, in part because of the remarkable benefits obtained by the use of coarse-grained methodology that despite being very important for this thesis work, is not easily publishable by itself. All this justify that most of the results are still in the publication phase.
Resumo:
This article reviews recent literature on hierarchical thermoplastic-based composites that simultaneously incorporate carbon nanotubes (CNTs) and conventional microscale fibers, and discusses the structure?property relationships of the resulting hybrids. The mixing of multiple and multiscale constituents enables the preparation of materials with new or improved properties due to synergistic effects. By exploiting the outstanding mechanical, thermal and electrical properties of CNTs, a new generation of multifunctional high-performance composites suitable for a wide variety of applications can be developed.
Resumo:
This thesis is devoted to the investigation of inter and intramolecular charge transfer (CT) in molecular functional materials and specifically organic dyes and CT crystals. An integrated approach encompassing quantum-chemical calculations, semiempirical tools, theoretical models and spectroscopic measurements is applied to understand structure-property relationships governing the low-energy physics of these materials. Four main topics were addressed: 1) Spectral properties of organic dyes. Charge-transfer dyes are constituted by electron donor (D) and electron acceptor (A) units linked through bridge(s) to form molecules with different symmetry and dimensionality. Their low-energy physics is governed by the charge resonance between D and A groups and is effectively described by a family of parametric Hamiltonians known as essential-state models. These models account for few electronic states, corresponding to the main resonance structures of the relevant dye, leading to a simple picture that is completed introducing the coupling of the electronic system to molecular vibrations, treated in a non-adiabatic way, and an effective classical coordinate, describing polar solvation. In this work a specific essential-state model was proposed and parametrized for the dye Brilliant Green. The central issue in this work has been the definition of the diabatic states, a not trivial task for a multi-branched chromophore. In a second effort, we have used essential-state models for the description of the early-stage dynamics of excited states after ultrafast excitation. Crucial to this work is the fully non-adiabatic treatment of the coupled electronic and vibrational motion, allowing for a reliable description of the dynamics of systems showing a multistable, broken-symmetry excited state. 2) Mixed-stack CT salts. Mixed-stack (MS) CT crystals are an interesting class of multifunctional molecular materials, where D and A molecules arrange themselves to form stacks, leading to delocalized electrons in one dimension. The interplay between the intermolecular CT, electrostatic interactions, lattice phonons and molecular vibrations leads to intriguing physical properties that include (photoinduced) phase transitions, multistability, antiferromagnetism, ferroelectricity and potential multiferroicity. The standard microscopic model to describe this family of materials is the Modified Hubbard model accounting for electron-phonon coupling (Peierls coupling), electron-molecular vibrations coupling (Holstein coupling) and electrostatic interactions. We adopt and validate a method, based on DFT calculations on dimeric DA structures, to extract relevant model parameters. The approach offers a powerful tool to shed light on the complex physics of MS-CT salts. 3) Charge transfer in organic radical dipolar dyes. In collaboration with the group of Prof. Jaume Veciana (ICMAB- Barcellona), we have studied spectral properties of a special class of CT dyes with D-bridge-A structure where the acceptor group is a stable radical (of the perchlorotriphenylmethyl, PTM, family), leading to an open-shell CT dyes. These materials are of interest since they associate the electronic and optical properties of CT dyes with magnetic properties from the unpaired electron. The first effort was devoted to the parametrization of the relevant essential-state model. Two strategies were adopted, one based on the calculation of the low-energy spectral properties, the other based on the variation of ground state properties with an applied electric field. 4) The spectral properties of organic nanoparticles based on radical species are investigated in collaboration with Dr. I. Ratera (ICMAB- Barcellona). Intriguing spectroscopic behavior was observed pointing to the presence of excimer states. In an attempt to rationalize these findings, extensive calculations (TD-DFT and ZINDO) were performed. The results for the isolated dyes are validated against experimental spectra in solution. To address intermolecular interactions we studied dimeric structures in the gas phase, but the preliminary results obtained do not support excimer formation.
Resumo:
Foi preparada uma série de quatro betalaínas com o objetivo de determinar o efeito da metilação do nitrogênio imínico e da presença de uma hidroxila fenólica na posição 3 do anel aromático sobre a estabilidade e propriedades antirradicalares, fotofísicas e redox desta classe de pigmentos vegetais. O estudo destes compostos, chamados de m-betalainofenol, N-metil-m-betalainofenol, fenilbetalaína e N-metil-fenilbetalaína, revelou que os derivados metilados apresentam um deslocamento hipsocrômico sutil dos máximos de absorção e fluorescência em relação aos compostos não metilados. Os deslocamentos de Stokes são maiores em cerca de 4 kJ mol-1 para os derivados metilados e os rendimentos quânticos de fluorescência cerca de três vezes menores. A hidrólise destas betalaínas foi investigada na faixa de pH entre 3 e 7. Todas as betalaínas são mais persistentes em pH = 6 e a metilação da porção imínica aumenta significativamente a estabilidade da betalaína em meio aquoso. A presença da porção fenólica, em comparação a um grupo fenila, não afeta as propriedades fotofísicas dos compostos e tem um efeito menos pronunciado do que o da metilação sobre a estabilidade destes em meio aquoso. O comportamento eletroquímico dos compostos foi estudado por voltametria cíclica, nas mesmas condições de pH. A N-metilação foi novamente mais significativa do que a hidroxilação, provocando aumento de até 200 mV no potencial de pico anódico. O aumento do pH diminuiu o potencial de pico anódico dos quatro compostos, com uma razão entre prótons e elétrons igual a 1 para a maioria dos picos. A capacidade antirradicalar foi quantificada pelo ensaio colorimétrico TEAC baseado na redução de ABTS•+. Os dois derivados N-metilados apresentaram, em média, o mesmo valor de TEAC, apesar de um ser fenólico e o outro não. Já entre os não metilados, que têm TEAC de 2 a 3 unidades inferior à dos outros, a presença do fenol provoca elevação da capacidade antirradicalar. Os resultados sugerem a participação dos elétrons do anel 1,2,3,4-tetraidropiridínico, acoplados ao próton do nitrogênio imínico na ação antirradicalar de betalaínas.
Resumo:
A caracterização dielétrica de um material pode ser usada como uma técnica não destrutiva para avaliar e monitorar sua qualidade, bem como no entendimento da relação estrutura-propriedade de um material, através de suas propriedades dielétricas em função da frequência, temperatura, composição química do material, dentre outros. Na literatura há escassez de trabalhos e dados de caracterização dielétrica de filmes a base de biopolímeros. Diante desse contexto, o objetivo deste trabalho foi o desenvolvimento e a construção de uma instrumentação alternativa a equipamentos disponíveis no mercado, como analisadores de rede e de impedância, que pudesse ser utilizada para a caracterização dielétrica de filmes biodegradáveis a base de gelatina. Foi utilizado o método de placas paralelas na determinação da parte real da permissividade conhecida como permissividade relativa ou constante dielétrica (ε\'). O circuito utilizado para a instrumentação foi um oscilador astável com funcionamento baseado no amplificador operacional (741) chaveado pela carga de um capacitor de placas paralelas cujo dielétrico foi uma amostra de filme biodegradável. A partir dos valores da frequência de oscilação e geometria do capacitor, foi possível calcular a capacitância de cada amostra e, consequentemente obter os valores da permissividade relativa do filme, usando relações básicas bem estabelecidas. Os filmes de gelatina foram produzidos pela técnica de casting sendo utilizados como plastificantes o glicerol (G), o sorbitol (S) e suas misturas, na proporção (G:S) de 30:70, 50:50 e 70:30. Os filmes foram caracterizados quanto à umidade e cristalinidade. A permissividade relativa (ε\') dos filmes, determinada a temperatura ambiente, foi avaliada em função da frequência (5 a 50 kHz), tempo de armazenamento, do teor de umidade e tipo de plastificante. A instrumentação projetada e construída foi capaz de medir com precisão a permissividade relativa das amostras, sendo que essa propriedade diminuiu com o aumento da frequência para todos os filmes. Mantendo-se a frequência constante, não houve variação de ε\' para os filmes de gelatina, independente do plastificante, ao longo de um mês de armazenamento a 24 ± 3 °C. O efeito da umidade foi observado em frequências menores que 25 kHz, sendo que quanto maior o teor de umidade maior a permissividade relativa. O efeito do tipo de plastificante na permissividade relativa dos filmes foi observado a baixas frequências (5 kHz) e filmes plastificados com sorbitol apresentaram maiores valores de ε\'. Os filmes plastificados com maior teor de umidade apresentaram menor cristalinidade, portanto maior mobilidade molecular e consequentemente maior a permissividade relativa.
Resumo:
In this article, we review the current state of knowledge concerning the physical and chemical properties of the eumelanin pigment. We examine properties related to its photoprotective functionality, and draw the crucial link between fundamental molecular structure and observable macroscopic behaviour. Where necessary, we also briefly review certain aspects of the pheomelanin literature to draw relevant comparison. A full understanding of melanin function, and indeed its role in retarding or promoting the disease state, can only be obtained through a full mapping of key structure-property relationships in the main pigment types. We are engaged in such an endeavor for the case of eumelanin.
Resumo:
Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Poly(styrene-co-maleic anhydride) (PSMA) based copolymers are known to undergo conformational transition in response to environmental stimuli. This smart behaviour makes it possible to mimic the behaviour of native apoproteins. The primary aim of this study was to develop a better understanding of the structure-property relationships of various PSMA-based copolymers sought. The work undertaken in this thesis has revealed that the responsive behaviour of PSMA-based copolymers can be tailored by varying the molecular weight, hydrophobic (styrene) and hydrophilic (maleic acid) balance, and more so in the presence of additional hydrophobic, mono-partial ester moieties. Novel hydrophilic and hydrophobic synthetic surfactant protein analogues have successfully been prepared. These novel lipid solubilising agents possess a broad range of HLB (hydrophilic-lipophilic balance) values that have been estimated. NMR spectroscopy was utilised to confirm the structures for PSMA-based copolymers sought and proved useful in furthering understanding of the structure-property relationships of PSMA-based copolymers. The association of PSMA with the polar phospholipid, 2-dilauryl-sn-glycero-3- phosphocholine (DLPC) produces polymer-lipid complexes analogous to lipoprotein assemblies present in the blood plasma. NMR analysis reveals that the PSMA-based copolymers are not perfectly alternating. Regio-irregular structures, atactic and random monomer sequence distribution have been identified for all materials studied. Novel lipid solubilising agents (polyanionic surfactants) have successfully been synthesised from a broad range of PSMA-based copolymers with desired estimated HLB values that interact with polar phospholipids (DLPC/DPPC) uniquely. Very low static and dynamic surface tensions have been observed via the du Noϋy ring method and Langmuir techniques and correlate well with the estimated HLB values. Synthetic protein-lipid analogues have been successfully synthesised, that mimic the unique surface properties of native biological lubricants without the use of solvents. The novel PSMA-DLPC complexes have successfully been combined with hyaluronan (hyaluronic acid, HA). Today, the employment of HA is economically feasible, because it is readily available from bacterial fermentation processes in a thermally stable form - HyaCare®. The work undertaken in this thesis highlights the usage of HA in biolubrication applications and how this can be optimised and thus justified by carefully selecting the biological source, concentration, molecular weight, purity and most importantly by combining it with compatible boundary lubricating agents (polar phospholipids). Experimental evidence supports the belief that the combined HA and PSMA-DLPC complexes provide a balance of rheological, biotribological and surface properties that are composition dependent, and show competitive advantage as novel synthetic biological lubricants (biosurfactants).
Resumo:
This study identifies and investigates the potential use of in-eye trigger mechanisms to supplement the widely available information on release of ophthalmic drugs from contact lenses under passive release conditions. Ophthalmic dyes and surrogates have been successfully employed to investigate how these factors can be drawn together to make a successful system. The storage of a drug-containing lens in a pH lower than that of the ocular environment can be used to establish an equilibrium that favours retention of the drug in the lens prior to ocular insertion. Although release under passive conditions does not result in complete dye elution, the use of mechanical agitation techniques which mimic the eyelid blink action in conjunction with ocular tear chemistry promotes further release. In this way differentiation between passive and triggered in vitro release characteristics can be established. Investigation of the role of individual tear proteins revealed significant differences in their ability to alter the equilibrium between matrix-held and eluate-held dye or drug. These individual experiments were then investigated in vivo using ophthalmic dyes. Complete elution was found to be achievable in-eye; this demonstrated the importance of that fraction of the drug retained under passive conditions and the triggering effect of in-eye conditions on the release process. Understanding both the structure-property relationship between drug and material and in-eye trigger mechanisms, using ophthalmic dyes as a surrogate, provides the basis of knowledge necessary to design ocular drug delivery vehicles for in-eye release in a controllable manner.
Resumo:
Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.