896 resultados para striated activator of Rho signalling (STARS)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.
Resumo:
Rho GTPases are proteins that regulate cell cycle, shape, polarization, invasion, migration, and apoptosis, which are important characteristics of normal and neoplastic cells. Rho GTPases expression has been reported in normal tooth germ and several pathologies; however, it has not been evaluated in ameloblastomas. The aim of this study was to analyze the expression and distribution of RhoA, RhoB, Rac1, and Cdc42 Rho GTPases in solid and unicystic ameloblastomas. Three-micrometer sections from paraffin- embedded specimens were evaluated by using an avidin- biotin immunohistochemical method with antibodies against the proteins mentioned above. RhoA and RhoB staining was observed in a high number of cells (P < 0.05) and greater intensity in non-polarized ones. Rac1 was not observed, andCdc42 didnot showany statistical differences between the number of non-polarized and basal positive cells (P > 0.05). Upon comparing the studied ameloblastomas, a higher number of positive cells in the unicystic variant was observed than that in the solid one (P < 0,05). The results obtained suggest that theseGTPases could play a role in the ameloblastoma neoplastic epithelial cell phenotype determination (polarized or non-polarized), as well as in variant (solid or unicystic) and subtype (follicular or plexiform) determination. Furthermore, they could participate in solid ameloblastoma invasion mechanisms. J Oral Pathol Med (2012) 41: 400-407
Resumo:
Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and alpha-element (Mg, Si, Ca, Ti) abundances: thick disk, high-alpha halo, and low-alpha halo. We find the oxygen abundance trends of thick-disk and high-alpha halo stars very similar. The low-alpha stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the a elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% +/- 2% of the local field metal-poor star population was born in GCs.
Resumo:
PURPOSE: To investigate the effect of cilostazol, in kidney and skeletal muscle of rats submitted to acute ischemia and reperfusion. METHODS: Fourty three animals were randomized and divided into two groups. Group I received a solution of cilostazol (10 mg/Kg) and group II received saline solution 0.9% (SS) by orogastric tube after ligature of the abdominal aorta. After four hours of ischemia the animals were divided into four subgroups: group IA (Cilostazol): two hours of reperfusion. Group IIA (SS): two hours of reperfusion. Group IB (Cilostazol): six hours of reperfusion. Group IIB (SS) six hours of reperfusion. After reperfusion, a left nephrectomy was performed and removal of the muscles of the hind limb. The histological parameters were studied. In kidney cylinders of myoglobin, vacuolar degeneration and acute tubular necrosis. In muscle interstitial edema, inflammatory infiltrate, hypereosinophilia fiber, cariopicnose and necrosis. Apoptosis was assessed by immunohistochemistry for cleaved caspase-3 and TUNEL. RESULTS: There was no statistically significant difference between groups. CONCLUSION: Cilostazol had no protective effect on the kidney and the skeletal striated muscle in rats submitted to acute ischemia and reperfusion in this model.
Resumo:
Programa de doctorado: Clínica Veterinaria e Investigación Terapéutica
Resumo:
The Notch signalling is a cellular pathway that results conserved from Drosophila to Homo sapiens controlling a wide range of cellular processes in development and in differentiated organs. It induces cell proliferation or differentiation, increased survival or apoptosis, and it is involved in stemness maintainance. These functions are conserved, but exerted with a high tissue and cellular context specificity. Signalling activation determs nuclear translocation of the receptor’s cytoplasmic domain and activation of target genes transcription. As many developmental pathway, Notch deregulation is involved in cancer, leading to oncogenic or tumour suppressive role depending on the functions exerted in normal tissue. Notch1 and Notch3 resulted aberrantly expressed in human hepatocellular carcinoma (HCC) that is the more frequent tumour of the liver and the sixth most common tumour worldwide. This thesis has the aim to investigate the role of the signalling in HCC, with particular attention to dissect common and uncommon regulatory pathways between Notch1 and Notch3 and to define the role of the signalling in HCC. Nocth1 and Notch3 were analysed on their regulation on Hes1 target and involvement in cell cycle control. They showed to regulate CDKN1C/p57kip2 expression through Hes1 target. CDKN1C/p57kip2 induces not only cell cycle arrest, but also senescence in HCC cell lines. Moreover, the involvement of Notch1 in cancer progression and epithelial to mesenchymal transition was investigated. Notch1 showed to induce invasion of HCC, regulating EMT and E- Cadherin expression. Moreover, Notch3 showed specific regulation on p53 at post translational levels. In vitro and ex vivo analysis on HCC samples suggests a complex role of both receptors in regulate HCC, with an oncogenic role but also showing tumour suppressive effects, suggesting a complex and deep involvement of this signalling in HCC.
Resumo:
Blue straggler stars (BSSs) are brighter and bluer (hotter) than the main-sequence (MS) turnoff and they are known to be more massive than MS stars.Two main scenarios for their formation have been proposed:collision-induced stellar mergers (COL-BSSs),or mass-transfer in binary systems (MT-BSSs).Depleted surface abundances of C and O are expected for MT-BSSs,whereas no chemical anomalies are predicted for COL-BSSs.Both MT- and COL-BSSs should rotate fast, but braking mechanisms may intervene with efficiencies and time-scales not well known yet,thus preventing a clear prediction of the expected rotational velocities.Within this context,an extensive survey is ongoing by using the multi-object spectrograph FLAMES@VLT,with the aim to obtain abundance patterns and rotational velocities for representative samples of BSSs in several Galactic GCs.A sub-population of CO-depleted BSSs has been identified in 47 Tuc,with only one fast rotating star detected.For this PhD Thesis work I analyzed FLAMES spectra of more than 130 BSSs in four GCs:M4,NGC 6397,M30 and ω Centauri.This is the largest sample of BSSs spectroscopically investigated so far.Hints of CO depletion have been observed in only 4-5 cases (in M30 and ω Centauri),suggesting either that the majority of BSSs have a collisional origin,or that the CO-depletion is a transient phenomenon.Unfortunately,no conclusions in terms of formation mechanism could be drawn in a large number of cases,because of the effects of radiative levitation. Remarkably,however,this is the first time that evidence of radiative levitation is found in BSSs hotter than 8200 K.Finally, we also discovered the largest fractions of fast rotating BSSs ever observed in any GCs:40% in M4 and 30% in ω Centauri.While not solving the problem of BSS formation,these results provide invaluable information about the BSS physical properties,which is crucial to build realistic models of their evolution.
Resumo:
We present evidence for differential roles of Rho-kinase and myosin light chain kinase (MLCK) in regulating shape, adhesion, migration, and chemotaxis of human fibrosarcoma HT1080 cells on laminin-coated surfaces. Pharmacological inhibition of Rho-kinase by Y-27632 or inhibition of MLCK by W-7 or ML-7 resulted in significant attenuation of constitutive myosin light chain phosphorylation. Rho-kinase inhibition resulted in sickle-shaped cells featuring long, thin F-actin-rich protrusions. These cells adhered more strongly to laminin and migrated faster. Inhibition of MLCK in contrast resulted in spherical cells and marked impairment of adhesion and migration. Inhibition of myosin II activation with blebbistatin resulted in a morphology similar to that induced by Y-27632 and enhanced migration and adhesion. Cells treated first with blebbistatin and then with ML-7 also rounded up, suggesting that effects of MLCK inhibition on HT1080 cell shape and motility are independent of inhibition of myosin activity.
Resumo:
BACKGROUND: We examined whether vascular smooth muscle (VSMC) or endothelial cell (EC) migration from internal mammary artery (MA) differed from VSMC or EC migration from saphenous vein (SV). METHODS AND RESULTS: Migration to PDGF-BB (1-10 ng/ml) was lower in VSMC from MA than SV; however, attachment, movement without chemokine, and chemokinesis were identical. Unlike VSMC, migration of EC was similar in response to several mediators. Expression of PDGF receptor-beta was lower in VSMC from MA than SV, while alpha-receptor expression was higher. PDGF-BB-induced RhoA activity was lower in MA than SV, while basal activity was identical. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced migration of VSMC from MA and SV. Mevalonate and geranylgeranylpyrophosphate rescued inhibition by rosuvastatin. PDGF-BB induced less stress fiber formation in VSMC from MA than SV. A dominant negative RhoA mutant inhibited stress fiber formation to PDGF-BB, while a constitutively active mutant resulted in maximal stress fiber formation in MA and SV. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced stress fiber formation in MA and SV. CONCLUSIONS: VSMC migration to PDGF-BB is lower in MA than SV, which is at least in part related to lower activity of the Rho/ROCK pathway.
Resumo:
The FsrABC system of Enterococcus faecalis controls the expression of gelatinase and a serine protease via a quorum-sensing mechanism, and recent studies suggest that the Fsr system may also regulate other genes important for virulence. To investigate the possibility that Fsr influences the expression of additional genes, we used transcriptional profiling, with microarrays based on the E. faecalis strain V583 sequence, to compare the E. faecalis strain OG1RF with its isogenic mutant, TX5266, an fsrB deletion mutant. We found that the presence of an intact fsrB influences expression of numerous genes throughout the growth phases tested, namely, late log to early stationary phase. In addition, the Fsr regulon is independent of the activity of the proteases, GelE and SprE, whose expression was confirmed to be activated at all three time points tested. While expression of some genes (i.e., ef1097 and ef0750 to -757, encoding hypothetical proteins) was activated in late log phase in OG1RF versus the fsrB deletion mutant, expression of ef1617 to -1634 (eut-pdu orthologues) was highly repressed by the presence of an intact Fsr at entry into stationary phase. This is the first time that Fsr has been characterized as a negative regulator. The newly recognized Fsr-regulated targets include other factors, besides gelatinase, described as important for biofilms (BopD), and genes predicted to encode the surface proteins EF0750 to -0757 and EF1097, along with proteins implicated in several metabolic pathways, indicating that the FsrABC system may be an important regulator in strain OG1RF, with both positive and negative effects.
Resumo:
Helicobacter pylori infects the human gastric mucosa causing a chronic infection that is the primary risk factor for gastric cancer development. Recent studies demonstrate that H. pylori promotes tolerogenic dendritic cell (DC) development indicating that this bacterium evades the host immune response. However, the signaling pathways involved in modulating DC activation during infection remain unclear. Here, we report that H. pylori infection activated the signal transducer and activator of transcription 3 (STAT3) pathway in murine bone marrow-derived DCs (BMDCs) and splenic DCs isolated ex vivo. Isogenic cagA-, cagE-, vacA- and urease-mutants exhibited levels of phosphoSTAT3 that were comparable to in the wild-type (WT) parent strain. H. pylori-infected BMDCs produced increased immunosuppressive IL-10, which activated STAT3 in an autocrine/paracrine fashion. Neutralization of IL-10 prevented H. pylori-mediated STAT3 activation in both BMDCs and splenic DCs. In addition, anti-IL-10 treatment of infected H. pylori-BMDCs was associated with increased CD86 and MHC II expression and enhanced proinflammatory IL-1β cytokine secretion. Finally, increased CD86 and MHC II expression was detected in H. pylori-infected STAT3 knockout DCs when compared to WT controls. Together, these results demonstrate that H. pylori infection induces IL-10 secretion in DCs, which activates STAT3, thereby modulating DC maturation and reducing IL-1β secretion. These findings identify a host molecular mechanism by which H. pylori can manipulate the innate immune response to potentially favor chronic infection and promote carcinogenesis. © 2014 S. Karger AG, Basel.
Resumo:
Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth.
Resumo:
Although bone morphogenetic proteins (BMPs) were initially identified for their potent bone-inducing activity, their precise roles in processes of endochondral and intramembranous bone formation are far from being clear. Tissue-specific loss-of-function experiments using the BMP receptor type IA (BMPR-IA) are particularly attractive since this receptor is thought to be essential for signaling by the closely related BMPs -2, 4, and 7. To ablate signaling through this receptor during chondrogenesis, we have generated transgenic mice expressing Cre recombinase under the control of the collagen type II (Col2a1) gene regulatory sequences. Mice lacking BMPR-IA function in chondrocytes display a number of skeletal abnormalities, including defects in bones of the chondrocranium, abnormal dorsal vertebral processes, scapulae with severe hypoplasia of dorsal elements, and shortening of the long bones. Alterations in the growth plate of long bones in mutants suggest that BMPR-IA is not required for early steps of the chondrocyte specification, but is rather important in regulation of terminal differentiation. Molecular analysis revealed noticeable downregulation of the Ihh/Ptch signalling pathway, decreased chondrocyte proliferation rate and deregulation of hypertrophy. ^ In order to elucidate the role of BMP signalling in development of the limb and intramembranous ossification, we have used mice expressing Cre recombinase under control of the Prx1 (MHox) regulatory elements (M. Logan, pers comm.). Cre activity was found in those mice in the developing limb bud mesenchyme, as well as in a subset of cranial neural crest cells. Prx1-Cre-induced conditional mutants display prominent defects in distal limb outgrowth, as well as ossification defects in a number of neural crest-derived calvarial bones. Intriguingly, mutant limbs displayed alterations in patterning along all three axes. Molecular analysis revealed ectopic anterior Shh/Ptch signalling pathway activation and expression of some Hox genes. Observed loss of Msx1 and Msx2 expression in the progress zone correlates with downregulation of Cyclin D1 and decreased distal outgrowth. Abnormal ventral localization of Lmx1b-expressing cells along with observed later morphological abnormalities suggest a novel role for BMP signalling in establishment or maintaining of the dorso-ventral polarity in the limb mesoderm. ^