851 resultados para statistical methods


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Porn studies researchers in the humanities have tended to use different research methods from those in social sciences. There has been surprisingly little conversation between the groups about methodology. This article presents a basic introduction to textual analysis and statistical analysis, aiming to provide for all porn studies researchers a familiarity with these two quite distinct traditions of data analysis. Comparing these two approaches, the article suggests that social science approaches are often strongly reliable – but can sacrifice validity to this end. Textual analysis is much less reliable, but has the capacity to be strongly valid. Statistical methods tend to produce a picture of human beings as groups, in terms of what they have in common, whereas humanities approaches often seek out uniqueness. Social science approaches have asked a more limited range of questions than have the humanities. The article ends with a call to mix up the kinds of research methods that are applied to various objects of study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this dissertation, I present an overall methodological framework for studying linguistic alternations, focusing specifically on lexical variation in denoting a single meaning, that is, synonymy. As the practical example, I employ the synonymous set of the four most common Finnish verbs denoting THINK, namely ajatella, miettiä, pohtia and harkita ‘think, reflect, ponder, consider’. As a continuation to previous work, I describe in considerable detail the extension of statistical methods from dichotomous linguistic settings (e.g., Gries 2003; Bresnan et al. 2007) to polytomous ones, that is, concerning more than two possible alternative outcomes. The applied statistical methods are arranged into a succession of stages with increasing complexity, proceeding from univariate via bivariate to multivariate techniques in the end. As the central multivariate method, I argue for the use of polytomous logistic regression and demonstrate its practical implementation to the studied phenomenon, thus extending the work by Bresnan et al. (2007), who applied simple (binary) logistic regression to a dichotomous structural alternation in English. The results of the various statistical analyses confirm that a wide range of contextual features across different categories are indeed associated with the use and selection of the selected think lexemes; however, a substantial part of these features are not exemplified in current Finnish lexicographical descriptions. The multivariate analysis results indicate that the semantic classifications of syntactic argument types are on the average the most distinctive feature category, followed by overall semantic characterizations of the verb chains, and then syntactic argument types alone, with morphological features pertaining to the verb chain and extra-linguistic features relegated to the last position. In terms of overall performance of the multivariate analysis and modeling, the prediction accuracy seems to reach a ceiling at a Recall rate of roughly two-thirds of the sentences in the research corpus. The analysis of these results suggests a limit to what can be explained and determined within the immediate sentential context and applying the conventional descriptive and analytical apparatus based on currently available linguistic theories and models. The results also support Bresnan’s (2007) and others’ (e.g., Bod et al. 2003) probabilistic view of the relationship between linguistic usage and the underlying linguistic system, in which only a minority of linguistic choices are categorical, given the known context – represented as a feature cluster – that can be analytically grasped and identified. Instead, most contexts exhibit degrees of variation as to their outcomes, resulting in proportionate choices over longer stretches of usage in texts or speech.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water quality data are often collected at different sites over time to improve water quality management. Water quality data usually exhibit the following characteristics: non-normal distribution, presence of outliers, missing values, values below detection limits (censored), and serial dependence. It is essential to apply appropriate statistical methodology when analyzing water quality data to draw valid conclusions and hence provide useful advice in water management. In this chapter, we will provide and demonstrate various statistical tools for analyzing such water quality data, and will also introduce how to use a statistical software R to analyze water quality data by various statistical methods. A dataset collected from the Susquehanna River Basin will be used to demonstrate various statistical methods provided in this chapter. The dataset can be downloaded from website http://www.srbc.net/programs/CBP/nutrientprogram.htm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A comparison study was carried out between a wireless sensor node with a bare die flip-chip mounted and its reference board with a BGA packaged transceiver chip. The main focus is the return loss (S parameter S11) at the antenna connector, which was highly depended on the impedance mismatch. Modeling including the different interconnect technologies, substrate properties and passive components, was performed to simulate the system in Ansoft Designer software. Statistical methods, such as the use of standard derivation and regression, were applied to the RF performance analysis, to see the impacts of the different parameters on the return loss. Extreme value search, following on the previous analysis, can provide the parameters' values for the minimum return loss. Measurements fit the analysis and simulation well and showed a great improvement of the return loss from -5dB to -25dB for the target wireless sensor node.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper considers invariant texture analysis. Texture analysis approaches whose performances are not affected by translation, rotation, affine, and perspective transform are addressed. Existing invariant texture analysis algorithms are carefully studied and classified into three categories: statistical methods, model based methods, and structural methods. The importance of invariant texture analysis is presented first. Each approach is reviewed according to its classification, and its merits and drawbacks are outlined. The focus of possible future work is also suggested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The environmental quality of land can be assessed by calculating relevant threshold values, which differentiate between concentrations of elements resulting from geogenic and diffuse anthropogenic sources and concentrations generated by point sources of elements. A simple process allowing the calculation of these typical threshold values (TTVs) was applied across a region of highly complex geology (Northern Ireland) to six elements of interest; arsenic, chromium, copper, lead, nickel and vanadium. Three methods for identifying domains (areas where a readily identifiable factor can be shown to control the concentration of an element) were used: k-means cluster analysis, boxplots and empirical cumulative distribution functions (ECDF). The ECDF method was most efficient at determining areas of both elevated and reduced concentrations and was used to identify domains in this investigation. Two statistical methods for calculating normal background concentrations (NBCs) and upper limits of geochemical baseline variation (ULBLs), currently used in conjunction with legislative regimes in the UK and Finland respectively, were applied within each domain. The NBC methodology was constructed to run within a specific legislative framework, and its use on this soil geochemical data set was influenced by the presence of skewed distributions and outliers. In contrast, the ULBL methodology was found to calculate more appropriate TTVs that were generally more conservative than the NBCs. TTVs indicate what a "typical" concentration of an element would be within a defined geographical area and should be considered alongside the risk that each of the elements pose in these areas to determine potential risk to receptors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.