972 resultados para spermatozoon motility
Modulation of the motility of the vagina vera of Ascaris suum in vitro by FMRFamide-related peptides
Resumo:
Ascaris suum contains a large number of FMRFamide-related peptides (FaRPs) of which KNEFIRFamide (AF1), KHEYLRFamide (AF2) and KSAYMRFamide (AF8, also called PF3) have been extensively studied and are known to exert actions on somatic muscle strips of the worm. In the present study, the effects of AF1, AF2 and AF8 on the activity of the vagina vera of female A. suum have been examined in vitro. The vagina vera is a muscular tube connecting the uterus and vagina uteri to the gonopore and is probably involved in regulating egg output. The tissue exhibited spontaneous, rhythmic contractions in vitro, which were modulated by each of the FaRPs tested. The effects of each of the peptides were qualitatively and quantitatively different, and in each case were reversible. AF1 (1 mu M) caused a biphasic response in the form of a transient lengthening of the preparation, followed by a shortening; contractions were initially inhibited but resumed 5 min post-addition of the peptide. Lower concentrations (less than or equal to 0.1 mu M) induced a less marked effect, with rhythmic contractions returning 5 min post-addition. AF2 and AF8 reduced contraction frequency at concentrations greater than or equal to 0.1 mu M. Both peptides also caused the tissue to shorten, although the effects of AF8 on baseline tension were inconsistent. The apparent potencies of AF1 and AF8 on contraction frequency of the vagina vera were 10-fold greater than AF2 and, unlike their actions on A. suum somatic body wall muscles, the actions of AF1 and AF2 were qualitatively different. Indeed, the effects of each of these FaRPs on the vagina vera were markedly different from those observed on the somatic muscle.
Resumo:
The actions of known platyhelminth FaRPs on the contractility of whole-worm preparations of the monogenean, Diclidophora merlangi have been examined in vitro for the first time. All of the peptides tested had excitatory effects on the motor activity of the worm. The order of potency for the peptides tested was: YIRFamide > GYIRFamide = RYIRFamide > GNFFRFamide = FLRFamide. However, although YIRFamide was more potent than GYIRFamide, the latter was the most efficacious on each of the motility parameters (tension, contraction amplitude and contraction frequency) examined at concentrations greater than or equal to 0.1 mu M. Serotonin, which stimulates contractility in the worm was used as a positive control. The excitatory activity of turbellarian and cestode neuropeptides on a monogenean indicates at least some structural similarities in the neuropeptide receptors of these classes of flatworm.
Resumo:
Hopanoids are pentacyclic triterpenoids that are thought to be bacterial surrogates for eukaryotic sterols, such as cholesterol, acting to stabilize membranes and to regulate their fluidity and permeability. To date, very few studies have evaluated the role of hopanoids in bacterial physiology. The synthesis of hopanoids depends on the enzyme squalene-hopene cyclase (Shc), which converts the linear squalene into the basic hopene structure. Deletion of the 2 genes encoding Shc enzymes in Burkholderia cenocepacia K56-2, BCAM2831 and BCAS0167, resulted in a strain that was unable to produce hopanoids, as demonstrated by gas chromatography and mass spectrometry. Complementation of the Delta shc mutant with only BCAM2831 was sufficient to restore hopanoid production to wild-type levels, while introducing a copy of BCAS0167 alone into the Delta shc mutant produced only very small amounts of the hopanoid peak. The Delta shc mutant grew as well as the wild type in medium buffered to pH 7 and demonstrated no defect in its ability to survive and replicate within macrophages, despite transmission electron microscopy (TEM) revealing defects in the organization of the cell envelope. The Delta shc mutant displayed increased sensitivity to low pH, detergent, and various antibiotics, including polymyxin B and erythromycin. Loss of hopanoid production also resulted in severe defects in both swimming and swarming motility. This suggests that hopanoid production plays an important role in the physiology of B. cenocepacia.
Resumo:
Burkholderia cenocepacia is a member of the Burkholderia cepacia complex (Bcc), a group of Gram-negative opportunistic pathogens that cause severe lung infections in patients with cystic fibrosis and display extreme intrinsic resistance to antibiotics including antimicrobial peptides. B. cenocepacia BCAL2157 encodes a protein homologous to SuhB, an inositol-1-monophosphatase from Escherichia coli, which was suggested to participate in posttranscriptional control of gene expression. In this work we show that a deletion of the suhB-like gene in B. cenocepacia (?suhBBc) was associated with pleiotropic phenotypes. The ?suhBBc mutant had a growth defect manifested by an almost 2-fold increase in the generation time relative to the parental strain. The mutant also had a general defect in protein secretion, motility and biofilm formation. Further analysis of the Type-2 and the Type-6 secretion systems activities revealed that these secretion systems were inactive in the ?suhBBc mutant. In addition, the mutant exhibited increased susceptibility to polymyxin B but not to aminoglycosides like gentamicin and kanamycin. Together, our results demonstrate that suhBBc deletion compromises general protein secretion including the activity of T2SS and T6SS, and affects polymyxin B resistance, motility, and biofilm formation. The pleiotropic effects observed upon suhBBc deletion demonstrate that suhBBc plays a critical role in the physiology of B. cenocepacia.
Resumo:
We developed an analytic strategy that correlates gene expression and clinical outcomes as a means to identify novel candidate oncogenes operative in breast cancer. This analysis, followed by functional characterization, resulted in the identification of Jumonji Domain Containing 6 (JMJD6) protein as a novel driver of oncogenic properties in breast cancer.
Resumo:
Bdellovibrio bacteriovorus is a famously fast, flagellate predatory bacterium, preying upon Gram-negative bacteria in liquids; how it interacts with prey on surfaces such as in medical biofilms is unknown. Here we report that Bdellovibrio bacteria "scout" for prey bacteria on solid surfaces, using slow gliding motility that is present in flagellum-negative and pilus-negative strains.
Resumo:
The predatory bacterium Bdellovibrio bacteriovorus uses flagellar motility to locate regions rich in Gram-negative prey bacteria, colliding and attaching to prey and then ceasing flagellar motility. Prey are then invaded to form a "bdelloplast" in a type IV pilus-dependent process, and prey contents are digested, allowing Bdellovibrio growth and septation. After septation, Bdellovibrio flagellar motility resumes inside the prey bdelloplast prior to its lysis and escape of Bdellovibrio progeny. Bdellovibrio can also grow slowly outside prey as long flagellate host-independent (HI) cells, cultured on peptone-rich media. The B. bacteriovorus HD100 genome encodes three pairs of MotAB flagellar motor proteins, each of which could potentially form an inner membrane ion channel, interact with the FliG flagellar rotor ring, and produce flagellar rotation. In 2004, Flannagan and coworkers (R. S. Flannagan, M. A. Valvano, and S. F. Koval, Microbiology 150:649-656, 2004) used antisense RNA and green fluorescent protein (GFP) expression to downregulate a single Bdellovibrio motA gene and reported slowed release from the bdelloplast and altered motility of the progeny. Here we inactivated each pair of motAB genes and found that each pair contributes to motility, both predatorily, inside the bdelloplast and during HI growth; however, each pair was dispensable, and deletion of no pair abolished motility totally. Driving-ion studies with phenamil, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and different pH and sodium conditions indicated that all Mot pairs are proton driven, although the sequence similarities of each Mot pair suggests that some may originate from halophilic species. Thus, Bdellovibrio is a "dedicated motorist," retaining and expressing three pairs of mot genes.
Resumo:
BACKGROUND: LuxS may function as a metabolic enzyme or as the synthase of a quorum sensing signalling molecule, auto-inducer-2 (AI-2); hence, the mechanism underlying phenotypic changes upon luxS inactivation is not always clear. In Helicobacter pylori, we have recently shown that, rather than functioning in recycling methionine as in most bacteria, LuxS (along with newly-characterised MccA and MccB), synthesises cysteine via reverse transsulphuration. In this study, we investigated whether and how LuxS controls motility of H. pylori, specifically if it has its effects via luxS-required cysteine metabolism or via AI-2 synthesis only.
RESULTS: We report that disruption of luxS renders H. pylori non-motile in soft agar and by microscopy, whereas disruption of mccAHp or mccBHp (other genes in the cysteine provision pathway) does not, implying that the lost phenotype is not due to disrupted cysteine provision. The motility defect of the DeltaluxSHp mutant was complemented genetically by luxSHp and also by addition of in vitro synthesised AI-2 or 4, 5-dihydroxy-2, 3-pentanedione (DPD, the precursor of AI-2). In contrast, exogenously added cysteine could not restore motility to the DeltaluxSHp mutant, confirming that AI-2 synthesis, but not the metabolic effect of LuxS was important. Microscopy showed reduced number and length of flagella in the DeltaluxSHp mutant. Immunoblotting identified decreased levels of FlaA and FlgE but not FlaB in the DeltaluxSHp mutant, and RT-PCR showed that the expression of flaA, flgE, motA, motB, flhA and fliI but not flaB was reduced. Addition of DPD but not cysteine to the DeltaluxSHp mutant restored flagellar gene transcription, and the number and length of flagella.
CONCLUSIONS: Our data show that as well as being a metabolic enzyme, H. pylori LuxS has an alternative role in regulation of motility by modulating flagellar transcripts and flagellar biosynthesis through production of the signalling molecule AI-2.
Resumo:
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.
Resumo:
Background: Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamental processes including the phosphorylation of protein kinases, gene transcription, calcium transport and smooth muscle contraction. In the blood fluke Schistosoma mansoni, calmodulins have been implicated in egg hatching, miracidial transformation and larval development. Previously, CaMs have been identified amongst liver fluke excretory-secretory products and three CaM-like proteins have been characterised biochemically from adult Fasciola hepatica, although their functions remain unknown.
Methods: In this study, we set out to investigate the biological function and control target potential of F. hepatica CaMs (FhCaMs) using RNAi methodology alongside novel in vitro bioassays.
Results: Our results reveal that: (i) FhCaMs are widely expressed in parenchymal cells throughout the forebody region of juvenile fluke; (ii) significant transcriptional knockdown of FhCaM1-3 was inducible by exposure to either long (~200 nt) double stranded (ds) RNAs or 27 nt short interfering (si) RNAs, although siRNAs were less effective than long dsRNAs; (iii) transient long dsRNA exposure-induced RNA interference (RNAi) of FhCaMs triggered transcript knockdown that persisted for ≥ 21 days, and led to detectable suppression of FhCaM proteins; (iv) FhCaM RNAi significantly reduced the growth of juvenile flukes maintained in vitro; (v) FhCaM RNAi juveniles also displayed hyperactivity encompassing significantly increased migration; (vi) both the reduced growth and increased motility phenotypes were recapitulated in juvenile fluke using the CaM inhibitor trifluoperazine hydrochloride, supporting phenotype specificity.
Conclusions: These data indicate that the Ca(2+)-modulating functions of FhCaMs are important for juvenile fluke growth and movement and provide the first functional genomics-based example of a growth-defect resulting from gene silencing in liver fluke. Whilst the phenotypic impacts of FhCaM silencing on fluke behaviour do not strongly support their candidature as new flukicide targets, the growth impacts encourage further consideration, especially in light of the speed of juvenile fluke growth in vivo.
Resumo:
A análise da mobilidade seminal é uma ferramenta importante para reprodução em aquacultura. Esta é uma técnica in vitro que auxilia a estabulação, manutenção e selecção de lotes de reprodutores. A análise de mobilidade seminal pode tornar-se potencialmente uma ferramenta para o melhoramento das condições do ambiente de fertilização. A utilização do software CASA (Computer Assisted Sperm Analysis) revolucionou a descrição e quantificação específica da mobilidade seminal. A maioria da informação recolhida sobre mobilidade de sémen de peixes baseia-se em espécies de água doce, pelo que é crucial conhecer as condições óptimas de activação da mobilidade de espermatozóides para novas espécies de de água salgada de interesse em aquacultura tal como Solea senegalensis. A optimização das condições de fertilização desta espécie é particularmente importante já que os lotes de reprodutores em cativeiro podem desenvolver disfunções reprodutoras. Este trabalho teve como objectivo realizar a avaliação das condições óptimas de activação da mobilidade do sémen em S. senegalensis em termos de temperatura, salinidade e pH. O segundo objectivo foi realizar a avaliação da influência de fluido ovárico homólogo (S. senegalensis) e heterólogo (Epinephelus marginatus) na mobilidade seminal de S. senegalensis. Deste modo foram realizados dois conjuntos de experiências: 1) mobilidade de sémen de 7 machos analisado através do CASA em diferentes temperaturas, salinidades e pH, 2) mobilidade de sémen de 8 machos activados na presença de diferentes concentrações de fluido ovárico. Os parâmetros do CASA foram registados e posteriormente analisados através de médias e cluster analysis. Concluiu-se que temperaturas mais elevadas (20 ºC) e baixas salinidades (25 ‰ e 30 ‰) da solução de activação ocorre um melhoramento das características de mobilidade seminal, tal como a velocidade. A presença de fluido ovárico em baixas concentrações melhora as características da mobilidade seminal assim como a longevidade dos espermatozóides. O fluido ovárico é consequentemente um factor que estimula a mobilidade seminal que tem sido negligenciado em estudos anteriores. Este estudo demonstrou que durante a época de reprodução a temperatura da água (20 ºC) e a salinidade (25 ‰ e 30 ‰) no tanque são os principais factores que melhoram a activação da mobilidade do sémen, sendo consequentemente uma contribuição importante para compreender a dinâmica do processo de fertilização em S. senegalensis.
Resumo:
PURPOSE: Orbital wall fracture may occur during endoscopic sinus surgery, resulting in oculomotor disorders. We report the management of four cases presenting with this surgical complication. METHODS: A non-comparative observational retrospective study was carried out on four patients presenting with diplopia after endoscopic ethmoidal sinus surgery. All patients underwent full ophthalmologic and orthoptic examination as well as orbital imaging. RESULTS: All four patients presented with diplopia secondary to a medial rectus lesion confirmed by orbital imaging. A large horizontal deviation as well as limitation of adduction was present in all cases. Surgical management consisted of conventional recession-resection procedures in three cases and muscle transposition in one patient. A useful field of binocular single vision was restored in two of the four patients. CONCLUSION: Orbital injury may occur during endoscopic sinus surgery and cause diplopia, usually secondary to medial rectus involvement due to the proximity of this muscle to the lamina papyracea of the ethmoid bone. Surgical management is based on orbital imaging, duration of the lesion, evaluation of anterior segment vasculature, results of forced duction testing and intraoperative findings. In most cases, treatment is aimed at the symptoms rather than the cause, and the functional prognosis remains guarded.