986 resultados para solvent effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Classical strong-stretching theory (SST) predicts that, as opposing polyelectrolyte brushes are compressed together in a salt-free theta solvent, they contract so as to maintain a finite polymer-free gap, which offers a potential explanation for the ultra-low frictional forces observed in experiments even with the application of large normal forces. However, the SST ignores chain fluctuations, which would tend to close the gap resulting in physical contact and in turn significant friction. In a preceding study, we examined the effect of fluctuations using self-consistent field theory (SCFT) and illustrated that high normal forces can still be applied before the gap is destroyed. We now look at the effect of adding salt. It is found to reduce the long-range interaction between the brushes but has little effect on the short-range part, provided the concentration does not enter the salted-brush regime. Consequently, the maximum normal force between two planar brushes at the point of contact is remarkably unaffected by salt. For the crossed-cylinder geometry commonly used in experiments, however, there is a gradual reduction because in this case the long-range part of the interaction contributes to the maximum normal force.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents liquid-liquid experimental data for systems composed of sunflower seed oil, ethanol and water from 10 to 60 degrees C. The influence of process variables (temperature (T) and water concentration in the solvent (W)) on both the solvent content present in the raffinate (S(RP)) and extract (S(EP)) phases and the partition of free fatty acids (k(2)) was evaluated using the response surface methodology, where flash calculations were performed for each trial using the UNIQUAC equation. Water content in the solvent was the most important factor on the responses of S(EP) and k(2). Additionally, statistical analysis showed that the S(RP) was predominantly affected by temperature factor for low water content in the solvent. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, calcium molybdate (CaMoO(4)) crystals (meso- and nanoscale) were synthesized by the coprecipitation method using different solvent volume ratios (water/ethylene glycol). Subsequently, the obtained suspensions were processed in microwave-assisted hydrothermal/solvothermal systems at 140 degrees C for 1 h. These meso- and nanocrystals processed were characterized by X-ray diffraction (X R I)), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR). ultraviolet visible (UV-vis) absorption spectroscopies, held-emission gun scanning electron microscopy (FEG-SEM). transmission electron microscopy (TEM). and photoluminescence (PL) measurements. X RI) patterns and FT-Raman spectra showed that these meso- and nanocrystals have a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 827 cm(-1), which is associated with the Mo-O anti-symmetric stretching vibrations into the [MoO(4)] clusters. FEG-SEM micrographs indicated that the ethylene glycol concentration in the aqueous solution plays an important role in the morphological evolution of CaMoO(4) crystals. High-resolution TEM micrographs demonstrated that the mesocrystals consist of several aggregated nanoparticles with electron diffraction patterns of monocrystal. In addition, the differences observed in the selected area electron diffraction patterns of CaMoO(4) crystals proved the coexistence of both nano- and mesostructures, First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed in order to understand the band structure find density of states For the CaMoO(4). UV-vis absorption measurements evidenced a variation in optical band gap values (from 3.42 to 3.72 cV) for the distinct morphologies. The blue and green PI. emissions observed in these crystals were ascribed to the intermediary energy levels arising from the distortions on the [MoO(4)] clusters clue to intrinsic defects in the lattice of anisotropic/isotropic crystals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Characterization of Sterculia striate polysaccharide (SSP) films adsorbed onto Si wafers from solutions prepared in ethyl methyl imidazolium acetate (EmimAc), water or NaOH 0.01 mol/L was systematically studied by means of ellipsometry, atomic force microscopy and contact angle measurements. SSP adsorbed from EmimAc onto Si wafer as homogeneous monolayers (similar to 0.5 nm thick), while from water or NaOH 0.01 mol/L SSP formed layers of similar to 4.0 nm and similar to 1.5 nm thick, respectively. Surface energy values found for SSP adsorbed from EmimAc or water were 68 +/- 2 mJ/m(2) and 65 +/- 2 mJ/m(2), respectively, whereas from NaOH it amounted to 57 +/- 3 mJ/m(2). The immobilization of lysozyme (LYS) onto SSP films was also investigated. The mean thickness of LYS (d(LYS)) immobilized onto SSP films adsorbed from each solvent tended to increase with the decrease of gamma(P)(S) and gamma(total)(S). However, the enzymatic activity of LYS molecules was higher when they were immobilized onto SSP films with higher gamma(P)(S) and gamma(total)(S) values. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cobalt catalysts were prepared on supports of SiO(2) and gamma-Al(2)O(3) by the impregnation method, using a solution of Co precursor in methanol. The samples were characterized by XRD, TPR, and Raman spectroscopy and tested in ethanol steam reforming. According to the XRD results, impregnation with the methanolic solution led to smaller metal crystallites than with aqueous solution, on the SiO(2) support. On gamma-Al(2)O(3), all the samples exhibited small crystallites, with either solvent, due to a higher Co-support interaction that inhibits the reduction of Co species. The TPR results were consistent with XRD results and the samples supported on gamma-Al(2)O(3) showed a lower degree of reduction. In the steam reforming of ethanol, catalysts supported on SiO(2) and prepared with the methanolic solution showed the best H(2), CO(2) and CO selectivity. Those supported on gamma-Al(2)O(3) showed lower H(2) selectivity. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of solvent uptake on the relaxation behaviour, morphology and mechanical properties of poly(ether ether ketone) (PEEK), poly(etherimide) (PEI) and a 50/50 PEEK/PEI blend have been investigated. Amorphous films were immersed in acetone at 25°C, 35°C and 45°C until equilibrium uptake was achieved. The films were then examined by wide angle X-ray scattering (WAXS), differential scanning calorimetry (d.s.c.), dynamic mechanical relaxation spectroscopy and mechanical testing. WAXS and d.s.c. revealed that the degree of solvent induced crystallinity in PEEK is constant with immersion temperature, whereas the degree of induced crystallinity in the 50/50 blend is strongly temperature dependent. The dynamic mechanical studies confirmed that a significant decrease in glass transition temperature results from the plasticizing effect of the solvent and that solvent and thermally crystallized samples have different relaxation characteristics. Mechanical property tests showed that the yield stress and tensile strength of the blend are dominated by PEEK and the degree of crystallinity, while the modulus is more sensitive to the extent of plasticization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the dissolution of semi-domestic silk type Antheraea assamensis using ionic liquids. We investigated the impact of different coagulating solvents, including isopropanol and water on the structure and the morphology of the regenerated silk. We found that the water regenerated silk film showed a high β-sheet content and a native silk-like XRD pattern.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The SPPS methodology has continuously been investigated as a valuable model to monitor the solvation properties of polymeric materials. In this connection, the present work applied HRMAS-NMR spectroscopy to examine the dynamics of an aggregating peptide sequence attached to a resin core with varying peptide loading (up to 80%) and solvent system. Low and high substituted BHAR were used for assembling the VQAAIDYING sequence and some of its minor fragments. The HRMAS-NMR results were in agreement with the swelling of each resin, i.e. there was an improved resolution of resonance peaks in the better solvated conditions. Moreover, the peptide loading and the attached peptide sequence also affected the spectra. Strong peptide chain aggregation was observed mainly in highly peptide loaded resins when solvated in CDCl3. Conversely, due to the better swelling of these highly loaded resins in DMSO, improved NMR spectra were acquired in this polar aprotic solvent, thus enabling the detection of relevant sequence-dependent conformational alterations. The more prominent aggregation was displayed by the VQAAIDYING segment and not by any of its intermediary fragments and these findings were also corroborated by EPR studies of these peptide-resins labelled properly with an amino acid-type spin probe. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 +/- A 5)%, (55 +/- A 5)% or (75 +/- A 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 +/- A 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the effect of solvent-induced conformational changes of poly(3,6-phenanthrene) on their two-photon absorption (2PA). Such effect was studied employing the wavelength-tunable femtosecond Z-scan technique and modeled using the sum-over-essential states approach. We observed a strong reduction of the 2PA cross-section when the sample was prepared in hexane (poor solvent) in comparison to chloroform (good solvent), which is related to the conformation adopted by the polymer in each case. In chloroform it adopts a random coil conformation, as opposed to the one-handed helix conformation in hexane. Our results pointed out that the coil to helix conformation change decreases the degree of molecular planarity of the polymer pi-conjugated backbone, which is primarily responsible for their optical nonlinearity, contributing to diminishing the effective transition dipole moments and, consequently, the 2PA cross-section. Moreover, by studying the nonlinear response with different light polarization, we showed that, although the solvent-induced conformational change does not alter the molecular symmetry of the polymer, it modifies considerably the direction of the transition dipole moments between the excited states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aligned nanofiber mats were prepared from cellulose acetate using an electrospinning technique. The nanofiber mats were then immersed in an ethanol/acetone mixture. The solvent treatment led to denser, more compact fibrous structure and slight decrease in fiber alignment. It increased fiber diameter and polymer crystallinity within fibers. These effects resulted in increase in the tensile strength of fibrous mats. Solvent treatment may offer a simple, efficient approach to improve the mechanical strength of nanofibrous mats.