954 resultados para software-defined network


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study deals with indoor positioning using GSM radio, which has the distinct advantage of wide coverage over other wireless technologies. In particular, we focus on passive localization systems that are able to achieve high localization accuracy without any prior knowledge of the indoor environment or the tracking device radio settings. In order to overcome these challenges, newly proposed localization algorithms based on the exploitation of the received signal strength (RSS) are proposed. We explore the effects of non-line-of-sight communication links, opening and closing of doors, and human mobility on RSS measurements and localization accuracy. We have implemented the proposed algorithms on top of software defined radio systems and carried out detailed empirical indoor experiments. The performance results show that the proposed solutions are accurate with average localization errors between 2.4 and 3.2 meters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing interest in autonomous coordinated driving and in proactive safety services, exploiting the wealth of sensing and computing resources which are gradually permeating the urban and vehicular environments, is making provisioning of high levels of QoS in vehicular networks an urgent issue. At the same time, the spreading model of a smart car, with a wealth of infotainment applications, calls for architectures for vehicular communications capable of supporting traffic with a diverse set of performance requirements. So far efforts focused on enabling a single specific QoS level. But the issues of how to support traffic with tight QoS requirements (no packet loss, and delays inferior to 1ms), and of designing a system capable at the same time of efficiently sustaining such traffic together with traffic from infotainment applications, are still open. In this paper we present the approach taken by the CONTACT project to tackle these issues. The goal of the project is to investigate how a VANET architecture, which integrates content-centric networking, software-defined networking, and context aware floating content schemes, can properly support the very diverse set of applications and services currently envisioned for the vehicular environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to use Software Defined Radio (SDR) in the civilian mobile applications will make it possible for the next generation of mobile devices to handle multi-standard personal wireless devices and ubiquitous wireless devices. The original military standard created many beneficial characteristics for SDR, but resulted in a number of disadvantages as well. Many challenges in commercializing SDR are still the subject of interest in the software radio research community. Four main issues that have been already addressed are performance, size, weight, and power. ^ This investigation presents an in-depth study of SDR inter-components communications in terms of total link delay related to the number of components and packet sizes in systems based on Software Communication Architecture (SCA). The study is based on the investigation of the controlled environment platform. Results suggest that the total link delay does not linearly increase with the number of components and the packet sizes. The closed form expression of the delay was modeled using a logistic function in terms of the number of components and packet sizes. The model performed well when the number of components was large. ^ Based upon the mobility applications, energy consumption has become one of the most crucial limitations. SDR will not only provide flexibility of multi-protocol support, but this desirable feature will also bring a choice of mobile protocols. Having such a variety of choices available creates a problem in the selection of the most appropriate protocol to transmit. An investigation in a real-time algorithm to optimize energy efficiency was also performed. Communication energy models were used including switching estimation to develop a waveform selection algorithm. Simulations were performed to validate the concept.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In questo scritto si analizzeranno alcune alternative nella configurazione di rete della piattaforma di cloud computing open source OpenStack. Verrà mostrata un’ installazione in ambiente di laboratorio di un cluster completo basato sulla release Liberty di Openstack, per poi modificarne la componente dedicata al Networking in modo da sfruttare diversi plugin e diversi protocolli. Si osserverà il traffico generato all’interno e verso l’esterno del sistema Openstack in modo da avere un quadro generale del comportamento dell’infrastruttura.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las Redes Definidas por Software (Software Defined Networking) permiten la monitorización y el control centralizado de la red, de forma que los administradores pueden tener una visión real y completa de la misma. El análisis y visualización de los diferentes parámetros obtenidos representan la forma más viable y práctica de programar la red en función de las necesidades del usuario. Por este motivo, en este proyecto se desarrolla una arquitectura modular cuyo objetivo es presentar en tiempo real la información que se monitoriza en una red SDN. En primera instancia, las diferentes métricas monitorizadas (error, retardo y tasa de datos) son almacenadas en una base de datos, para que en una etapa posterior se realice el análisis de dichas métricas. Finalmente, los resultados obtenidos, tanto de métricas en tiempo real como de los datos estadísticos, son presentados en una aplicación web. La información es obtenida a través de la interfaz REST que expone el controlador Floodlight y para el análisis de la información se plantea una comparación entre los valores medios y máximos del conjunto de datos. Los resultados obtenidos muestran gráficamente de forma clara y precisa las diferentes métricas de monitorización. Además, debido al carácter modular de la arquitectura, se ofrece un valor añadido a los sistemas actuales de monitorización SDN.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advances in FPGA technology and higher processing capabilities requirements have pushed to the emerge of All Programmable Systems-on-Chip, which incorporate a hard designed processing system and a programmable logic that enable the development of specialized computer systems for a wide range of practical applications, including data and signal processing, high performance computing, embedded systems, among many others. To give place to an infrastructure that is capable of using the benefits of such a reconfigurable system, the main goal of the thesis is to implement an infrastructure composed of hardware, software and network resources, that incorporates the necessary services for the operation, management and interface of peripherals, that coompose the basic building blocks for the execution of applications. The project will be developed using a chip from the Zynq-7000 All Programmable Systems-on-Chip family.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Un sistema de SDR (Software Defined Radio) es un sistema de radio programable que delega gran parte del procesamiento hecho clásicamente en hardware,en software corriendo en un ordenador. Dos ventajas inmediatas de un dispositivo de SDR frente a un dispositivo de radio tradicional son el abaratamiento del coste del hardware (menos y menos complejo) y la facilidad de modificación de la funcionalidad específica de la radio (implementaciones software, tan simple como programar cualquier protocolo deseado). Debido al abaratamiento de estos productos y su facilidad de programación e interconexión con un ordenador personal, el mundo de la radiocomunicación es bastante más accesible. Cuando un dominio es poco conocido o accesible, es típico que los sistemas no sean seguros por diseño, sino por oscuridad. Si en un corto periodo de tiempo la accesibilidad a ese dominio aumenta considerablemente, los sistemas seguros por oscuridad se encuentran en peligro. Este trabajo pretende estudiar si efectivamente, al ser más accesible el dominio de la radiocomunicación debido a la accesibilidad de los dispositivos de SDR, ciertos sistemas se encuentran expuestos. La investigación del estado del arte y el estudio práctico de sistemas públicos en el ámbito local, nos permitirá entender hasta qué punto existen riesgos reales. Si se encuentra en el ámbito local una vulnerabilidad en algún sistema, se documentará y se propondrá una posible forma de aprovecharla y solucionarla.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In questi anni, c’è stato un grande sviluppo negli standard wireless nel mondo della televisione, della radio e delle comunicazioni mobili. Questo ha portato con sé problemi di compatibilità tra le reti wireless e ha limitato lo sviluppo di nuove funzionalità e servizi. La Software Defined Radio rappresenta una soluzione di flessibilità per affrontare questa serie di problematiche. In un sistema di comunicazione digitale, le informazioni viaggiano su un canale che è soggetto a rumore ed interferenza; perciò, per garantire robustezza e affidabilità alle applicazioni nella comunicazione digitale, i sistemi richiedono l’uso di codici di correzione degli errori, basati su schemi di codifica di canale. Esistono diverse tipologie di codici per la correzione degli errori, tra le quali il turbo codice, utilizzato nei sistemi LTE. Questo lavoro presenta la progettazione e la successiva ottimizzazione di un turbo encoder per sistemi LTE su una scheda FPGA, la quale, a differenza di altri dispositivi, meglio si presta a questo scopo, grazie alla caratteristica di riprogrammabilità. Dapprima viene presentato un turbo encoder sequenziale, il quale viene ottimizzato creandone una versione parallela. I risultati mostrano che l’architettura parallela presenta prestazioni, in termini di throughput, quattro volte migliori di quella sequenziale, a fronte di un lieve aumento dell’uso delle risorse della scheda. Confrontando questo turbo encoder ottimizzato con un progetto presente in letteratura, si nota che l’efficienza d’area risulta maggiore con un fattore circa pari a 3.