998 resultados para sliding modes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two beetle-type scanning tunneling microscopes are described. Both designs have the thermal stability of the Besocke beetle and the simplicity of the Wilms beetle. Moreover, sample holders were designed that also allow both semiconductor wafers and metal single crystals to be studied. The coarse approach is a linear motion of the beetle towards the sample using inertial slip–stick motion. Ten wires are required to control the position of the beetle and scanner and measure the tunneling current. The two beetles were built with different sized piezolegs, and the vibrational properties of both beetles were studied in detail. It was found, in agreement with previous work, that the beetle bending mode is the lowest principal eigenmode. However, in contrast to previous vibrational studies of beetle-type scanning tunneling microscopes, we found that the beetles did not have the “rattling” modes that are thought to arise from the beetle sliding or rocking between surface asperities on the raceway. The mass of our beetles is 3–4 times larger than the mass of beetles where rattling modes have been observed. We conjecture that the mass of our beetles is above a “critical beetle mass.” This is defined to be the beetle mass that attenuates the rattling modes by elastically deforming the contact region to the extent that the rattling modes cannot be identified as distinct modes in cross-coupling measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction can influence the quality of the finished product to a large extent in certain manufacturing processes. Sheet metal forming is a particular case, where the friction between the hard-die and the relatively soft work-piece can be extremely important. Under such conditions, topography of the harder surface can influence the resistance to traction at the interface. This paper discusses about the correlation between certain features of the surface; topography and coefficient of friction based on experiments involving sliding of a few soft metal pins against a harder material. A brief description of the experimental procedure and the analysis are presented. A hybrid parameter which encapsulates both the amplitude features as well as the relative packing of peaks is shown to correlate well with the coefficient of friction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subsurface deformation during dry sliding of Al-Si alloys is studied by fragmentation of silicon particles. The size of the fragmented particles does not vary with load. The depth of deformation is found to increase with increase in normal load. This experimental observation agrees with load-deformation depth characteristics obtained by a slip line field model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controversy exists in the published literature as to the effect of silicon content and pressure on the dry sliding wear of Al---Si alloys. The present paper attempts to clarify the question by reporting a statistical analysis of data obtained from factorially designed experiments conducted on a pinon-disc machine in the pressure range 0.105–1.733 MPa and speed range 0.19–0.94 m s−1. Under these conditions it was found that, in the range 4–24 wt.% Si, wear of binary unmodified alloys does not significantly differ between the alloys. However, it is significantly less than that corresponding to an alloy containing no silicon. The effect of pressure on wear rate was found to be linear and monotonie and, over the narrow range of speeds used, the wear rate was found to be unaffected by speed. The coefficient of friction was found to be insensitive to variations in silicon content, pressure and speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An input-output, frequency-domain characterization of decentralized fixed modes is given in this paper, using only standard block-diagram algebra, well-known determinantal expansions and the Binet-Cauchy formula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, the wear behaviour of a creep-resistant AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations is examined in the longitudinal direction i.e., the plane containing random fibre orientation is perpendicular to the steel counter-face. Wear tests are conducted on a pin-on-disc set-up under dry sliding condition having a constant sliding velocity of 0.837 m/s for a constant sliding distance of 2.5 km in the load range of 10-40 N. It is observed that the wear rate increases with increase in load for the alloy and the composites, as expected. Wear rate of the composites is lower than the alloy and the hybrid composites exhibit a lower wear rate than the Saffil short fibres reinforced composite at all the loads. Therefore, the partial replacement of Saffil short fibres by an equal volume fraction of SiC particles not only reduces the cost but also improves the wear resistance of the composite. Microstructural investigation of the surface and subsurface of the worn pin and wear debris is carried out to explain the observed results and to understand the wear mechanisms. It is concluded that the presence of SiC particles in the hybrid composites improves the wear resistance because these particles remain intact and retain their load bearing capacity even at the highest load employed, they promote the formation of iron-rich transfer layer and they also delay the fracture of Saffil short fibres to higher loads. Under the experimental conditions used in the present investigation, the dominant wear mechanism is found to be abrasion for the AE42 alloy and its composites. It is accompanied by severe plastic deformation of surface layers in case of alloy and by the fracture of Saffil short fibres as well as the formation of iron-rich transfer layer in case of composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of the nanocrystalline tribolayer produced in oxygen free high conductivity copper after sliding against 440C stainless steel was studied. Tests were conducted on a pin-on-disk tribometer at sliding velocities of 0.05 and 1.0 m/s and sliding times of 0.1 to 10,000 s. Subsurface deformation and the growth of the tribolayer as a function of time were studied with the use of transmission electron microscopy and ion induced secondary electron microscopy. A continuous nanocrystalline tribolayer was produced after as little as 10 s of sliding at both sliding velocities. The tribolayer produced by sliding at 0.05 m/s continued to grow at sliding times up to 10,000 s and developed texture. Dynamic recrystallization of the tribolayer at a sliding velocity of 1.0 m/s inhibited the growth of a continuous anocrystalline tribolayer.