911 resultados para sistemas neuro-fuzzy
Resumo:
Information processing in the human brain has always been considered as a source of inspiration in Artificial Intelligence; in particular, it has led researchers to develop different tools such as artificial neural networks. Recent findings in Neurophysiology provide evidence that not only neurons but also isolated and networks of astrocytes are responsible for processing information in the human brain. Artificial neural net- works (ANNs) model neuron-neuron communications. Artificial neuron-glia networks (ANGN), in addition to neuron-neuron communications, model neuron-astrocyte con- nections. In continuation of the research on ANGNs, first we propose, and evaluate a model of adaptive neuro fuzzy inference systems augmented with artificial astrocytes. Then, we propose a model of ANGNs that captures the communications of astrocytes in the brain; in this model, a network of artificial astrocytes are implemented on top of a typical neural network. The results of the implementation of both networks show that on certain combinations of parameter values specifying astrocytes and their con- nections, the new networks outperform typical neural networks. This research opens a range of possibilities for future work on designing more powerful architectures of artificial neural networks that are based on more realistic models of the human brain.
Resumo:
The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.
Resumo:
By proposing a numerical based method on PCA-ANFIS(Adaptive Neuro-Fuzzy Inference System), this paper is focusing on solving the problem of uncertain cycle of water injection in the oilfield. As the dimension of original data is reduced by PCA, ANFIS can be applied for training and testing the new data proposed by this paper. The correctness of PCA-ANFIS models are verified by the injection statistics data collected from 116 wells inside an oilfield, the average absolute error of testing is 1.80 months. With comparison by non-PCA based models which average error is 4.33 months largely ahead of PCA-ANFIS based models, it shows that the testing accuracy has been greatly enhanced by our approach. With the conclusion of the above testing, the PCA-ANFIS method is robust in predicting the effectiveness cycle of water injection which helps oilfield developers to design the water injection scheme.
Resumo:
Los mercados asociados a los servicios de voz móvil a móvil, brindados por operadoras del Sistema Móvil Avanzado en Latinoamérica, han estado sujetos a procesos regulatorios motivados por la dominancia en el mercado de un operador, buscando obtener óptimas condiciones de competencia. Específicamente en Ecuador, la Superintendencia de Telecomunicaciones (Organismo Técnico de Control de Telecomunicaciones) desarrolló un modelo para identificar acciones de regulación que puedan proporcionar al mercado efectos sostenibles de competencia en el largo plazo. Este artículo trata sobre la aplicación de la ingeniería de control para desarrollar un modelo integral del mercado, empleando redes neuronales para la predicción de trarifas de cada operador y un modelo de lógica difusa para predecir la demanda. Adicionalmente, se presenta un modelo de inferencia de lógica difusa para reproducir las estrategias de mercadeo de los operadores y la influencia sobre las tarifas. Dichos modelos permitirían la toma adecuada de decisiones y fueron validados con datos reales.
Resumo:
Este trabalho investiga a implementação de sistemas fuzzy com circuitos eletrônicos. Tais sistemas têm demonstrado sua capacidade de resolver diversos tipos de problemas em várias aplicações de engenharia, em especial nas relacionadas com controle de processos. Para processos mais complexos, o raciocínio aproximado da lógica fuzzy fornece uma maneira de compreender o comportamento do sistema, permitindo a interpolação aproximada entre situações observadas de entrada e saída. A implementação de um sistema fuzzy pode ser baseada em hardware, em software ou em ambos. Tipicamente, as implementações em software utilizam ambientes de programação integrados com simulação, de modo a facilitar o trabalho do projetista. As implementações em hardware, tradicionais ou evolutivas, podem ser analógicas ou digitais e viabilizam sistemas de maior desempenho. Este trabalho tem por objetivo pesquisar a implementação eletrônica de sistemas fuzzy, a fim de viabilizar a criação de sistemas reais capazes de realizar o mapeamento de entrada e saída adequado. O foco é a utilização de uma plataforma com uma arquitetura analógico-digital baseada em uma tabela de mapeamento armazenada em uma memória de alta capacidade. Memórias do tipo SD (Secure Digital) foram estudadas e utilizadas na construção do protótipo eletrônico da plataforma. Também foram desenvolvidos estudos sobre a quantização, especificamente sobre a possibilidade de redução do número de bits. Com a implementação realizada é possível desenvolver um sistema fuzzy num ambiente simulado (Matlab), configurar a plataforma e executar o sistema fuzzy diretamente na plataforma eletrônica. Os testes com o protótipo construído comprovaram seu bom funcionamento.
Resumo:
Esta dissertaçãoo investiga a utilização de Particle Swarm Optimization (PSO) para a obtenção automática de sistemas fuzzy do tipo Mamdani, tendo como insumo apenas as definições das variáveis do problema, seus domínios e a função objetivo. Neste trabalho utilizam-se algumas técnicas conhecidas na tentativa de minimizar a obtenção de sistemas fuzzy que não sejam coerentes. As principais técnicas usadas são o método de Wang e Mendell, chamado de WM, para auxiliar na obtenção de regras, e os conceitos de clusterização para obtenção das funções de pertinência. Na função de avaliação proposta, considera-se não somente a acurácia do sistema fuzzy, através da medida do erro, mas também a sua interpretabilidade, através da medida da compacidade, que consiste da quantidade de regras e funções membro, da distinguibilidade, que permite evitar que as funções membro não se confundam, e da completude, que permite avaliar que as funções membro abranjam o máximo do domínio. O propósito deste trabalho consiste no desenvolvimento de um algoritmo baseado em PSO, cuja função de avaliação congregue todos esses objetivos. Com parâmetros bem definidos, o algoritmo pode ser utilizado em diversos tipos de problemas sem qualquer alteração, tornando totalmente automática a obtenção de sistemas fuzzy. Com este intuito, o algoritmo proposto é testado utilizando alguns problemas pré-selecionados, que foram classificados em dois grupos, com base no tipo de função: contínua ou discreta. Nos testes com funções contínuas, são utilizados sistemas tridimensionais, com duas variáveis de entrada e uma de saída, enquanto nos testes com funções discretas são utilizados problemas de classificação, sendo um com quatro variáveis e outro com seis variáveis de entrada. Os resultados gerados pelo algoritmo proposto são comparados com aqueles obtidos em outros trabalhos.
Resumo:
This works presents a proposal to make automatic the identification of energy thefts in the meter systems through Fuzzy Logic and supervisory like SCADA. The solution we find by to collect datas from meters at customers units: voltage, current, power demand, angles conditions of phasors diagrams of voltages and currents, and taking these datas by fuzzy logic with expert knowledge into a fuzzy system. The parameters collected are computed by fuzzy logic, in engineering alghorithm, and the output shows to user if the customer researched may be consuming electrical energy without to pay for it, and these feedbacks have its own membership grades. The value of this solution is a need for reduce the losses that already sets more than twenty per cent. In such a way that it is an expert system that looks for decision make with assertivity, and it looks forward to find which problems there are on site and then it wont happen problems of relationship among the utility and the customer unit. The database of an electrical company was utilized and the datas from it were worked by the fuzzy proposal and algorithm developed and the result was confirmed
Resumo:
Neste trabalho é proposta uma metodologia de rastreamento de sinais e rejeição de distúrbios aplicada a sistemas não-lineares. Para o projeto do sistema de rastreamento, projeta-se os controladores fuzzy M(a) e N(a) que minimizam o limitante superior da norma H∞ entre o sinal de referência r(t) e o sinal de erro de rastreamento e(t), sendo e(t) a diferença entre a entrada de referência e a saída do sistema z(t). No método de rejeição de distúrbio utiliza-se a realimentação dinâmica da saída através de um controlador fuzzy Kc(a) que minimiza o limitante superior da norma H∞ entre o sinal de entrada exógena w(t) e o sinal de saída z(t). O procedimento de projeto proposto considera as não-linearidades da planta através dos modelos fuzzy Takagi-Sugeno. Os métodos são equacionados utilizando-se inequações matriciais lineares (LMIs), que quando factíveis, podem ser facilmente solucionados por algoritmos de convergência polinomial. Por fim, um exemplo ilustra a viabilidade da metodologia proposta.
Resumo:
Relaxed conditions for the stability study of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. These results are also used for the fuzzy regulators design. The nonlinear systems are represented by the fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by LMIs (Linear Matrix Inequalities), that can be solved efficiently by convex programming techniques. The specification of the decay rate, constraints on control input and output are also described by LMIs. Finally, the proposed design method is applied in the control of an inverted pendulum.
Resumo:
In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)