999 resultados para seed particles
Resumo:
Exposure to ultrafine particles (diameter less than 100 nm) is an important topic in epidemiological and toxicological studies. This study used the average particle number size distribution data obtained from our measurement survey in major micro-environments, together with the people activity pattern data obtained from the Italian Human Activity Pattern Survey to estimate the tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. We developed a numerical methodology based on Monte Carlo method, in order to estimate the best combination from a probabilistic point of view. More than 106 different cases were analyzed according to a purpose built sub-routine and our results showed that the daily alveolar particle number and surface area deposited for all of the age groups considered was equal to 1.5 x 1011 particles and 2.5 x 1015 m2, respectively, varying slightly for males and females living in Northern or Southern Italy. In terms of tracheobronchial deposition, the corresponding values for daily particle number and surface area for all age groups was equal to 6.5 x 1010 particles and 9.9 x 1014 m2, respectively. Overall, the highest contributions were found to come from indoor cooking (female), working time (male) and transportation (i.e. traffic derived particles) (children).
Resumo:
The renovation of biomass waste in the form of date seed waste into activated carbon and biofuel by fixed bed pyrolysis reactor has been focused in this study to obtain gaseous, liquid, and solid products. The date seed in particle form is pyrolysed in an externally heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 400◦C to 600◦C. A maximum liquid yield of 50wt.% and char of 30wt.% are obtained at a reactor bed temperature of 500◦C with a running time of 120 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived. Decolonization of 85–97% is recorded for the textile effluent and 75–90% for the tannery effluent, in all cases decreasing with temperature increase. Good adsorption capacity of the prepared activated carbon in case of diluted textile and tannery effluent was found.
Resumo:
The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils.
Design and construction of fixed bed pyrolysis system and plum seed pyrolysis for bio-oil production
Resumo:
This work investigated the production of bio oil from plum seed (Zyziphus jujuba) by fixed bed pyrolysis technology. A fixed bed pyrolysis system has been designed and fabricated for production of bio oil. The major components of the system are: fixed bed reactor, liquid condenser and liquid collector. Nitrogen gas was used to maintain the inert atmosphere in the reactor where the pyrolysis reaction takes place. The feedstock considered in this study is plum seed as it is available waste material in Bangladesh. The reactor is heated by means of a cylindrical biomass external heater. Rice husk was used as the energy source. The products are oil, char and gas. The parameters varied are reactor bed temperature, running time and feed particle size. The parameters are found to influence the product yields significantly. The maximum liquid yield of 39 wt% at 5200C for a feed particle size of 2.36-4.75 mm and a gas flow rate of 8 liter/min with a running time of 120 minute. The pyrolysis oil obtained at these optimum process conditions are analyzed for some of their properties as an alternative fuel. The density of the liquid was closer with diesel. The viscosity of the plum seed liquid was lower than that of the conventional fuels. The calorific value of the pyrolysis oil is one half of the diesel fuel.
Resumo:
The conversion of tamarind seeds into pyrolytic oil by fixed bed fire-tube heating reactor has been taken into consideration in this study. The major components of the system were fixed bed fire-tube heating reactor, liquid condenser and collectors. The raw and crushed tamarind seed in particle form was pyrolized in an electrically heated 10 cm diameter and 27 cm high fixed bed reactor. The products are oil, char and gases. The parameters varied were reactor bed temperature, running time, gas flow rate and feed particle size. The parameters were found to influence the product yields significantly. The maximum liquid yield was 45 wt% at 4000C for a feed size of 1.07cm3 at a gas flow rate of 6 liter/min with a running time of 30 minute. The pyrolysis oil was obtained at these optimum process conditions were analyzed for physical and chemical properties to be used as an alternative fuel.
Resumo:
Among various thermo-chemical conversion processes, pyrolysis is considered as an emerging technology for liquid oil production. The conversion of biomass waste in the form of plum seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from this plum seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The plum seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 39 wt% of biomass feed is obtained with particle size of 2.36-4.75 mm at a reactor bed temperature of 520oC with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 22.39 MJ/kg which is higher than other biomass derived pyrolysis oils.
Resumo:
Recent research has described the restructuring of particles upon exposure to organic vapours; however, as yet hypotheses able to explain this phenomenon are limited. In this study, a range of experiments were performed to explore different hypotheses related to carbonaceous particle restructuring upon exposure to organic and water vapours, such as: the effect of surface tension, the role of organics in flocculating primary particles, as well as the ability of vapours to “wet” the particle surface. The change in mobility diameter (dm) was investigated for a range carbonaceous particle types (diesel exhaust, petrol exhaust, cigarette smoke, candle smoke, particles generated in a heptane/toluene flame, and wood smoke particles) exposed to different organic (heptane, ethanol, and dimethyl sulfoxide/water (1:1 vol%) mixture) and water vapours. Particles were first size-selected and then bubbled through an impinger (bubbler) containing either an organic solvent or water, where particles trapped inside rising bubbles were exposed to saturated vapours of the solvent in the impinger. The size distribution of particles was simultaneously measured upstream and downstream from the impinger. A size-dependent reduction in dm was observed when bubbling diesel exhaust, particles generated in a heptane/toluene flame, and candle smoke particles through heptane, ethanol and a dimethyl sulfoxide/water (1:1 vol %) mixture. In addition, the size distributions of particles bubbled through an impinger were broader. Moreover, an increase of the geometric standard deviation (σ) of the size distributions of particles bubbled through an impinger was also found to be size-dependent. Size-dependent reduction in dm and an increase of σ indicate that particles undergo restructuring to a more compact form, which was confirmed by TEM analysis. However, bubbling of these particles through water did not result in a size-dependent reduction in dm, nor in an increase of σ. Cigarette smoke, petrol exhaust, and wood smoke particles did not result in any substantial change in dm, or σ, when bubbled through organic solvents or water. Therefore, size-dependent reduction in the dm upon bubbling through organic solvents was observed only for particles that had a fractal-like structure, whilst particles that were liquid or were assumed to be spherical did not exhibit any reduction in dm. Compaction of fractal-like particles was attributed to the ability of condensing vapours to efficiently wet the particles. Our results also show that the presence of an organic layer on the surface of fractal-like particles, or the surface tension of the condensed liquid do not influence the extent of compaction.
Resumo:
The renovation of biomass waste in the form of Mahogany seed waste into bio-fuel as well as activated carbon by fixed bed pyrolysis reactor has been taken into consideration in this study. The mahogany seed in particle form is pyrolyzed in an enormously heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 4000C to 6000C using a external heater in which rice husk and charcoal are used as the heater biomass fuel. Reactor bed temperature, running time and feed particle size have been varied to get the optimum operating conditions of the system. The parameters are found to influence the product yields to a large extent. A maximum liquid and char yield are 49 wt. % and 35 wt. % respectively obtained at a reactor bed temperature 5000C when the running time is 90 minutes. Acquired pyrolyzed oil at these optimal process conditions were analyzed for some of their properties as an alternative fuel. The oil possesses comparable flame temperature, favorable flash point and reasonable viscosity along with somewhat higher density. The kinematic viscosity of the derived fuel is 3.8 cSt and density is 1525 kg/m3. The higher calorific value is found 32.4 MJ/kg which is significantly higher than other biomass derived fuel. Moderate adsorption capacity of the prepared activated carbon in case of methyl blue & tea water was also revealed.
Resumo:
Time-activity patterns and the airborne pollutant concentrations encountered by children each day are an important determinant of individual exposure to airborne particles. This is demonstrated in this work by using hand-held devices to measure the real-time individual exposure of more than 100 children aged 8-11 years to particle number concentrations and average particle diameter, as well as alveolar and tracheobronchial deposited surface area concentration. A GPS-logger and activity diaries were also used to give explanation to the measurement results. Children were divided in three sample groups: two groups comprised of urban schools (school time from 8:30 am to 1:30 pm) with lunch and dinner at home, and the third group of a rural school with only dinner at home. The mean individual exposure to particle number concentration was found to differ between the three groups, ranging from 6.2×104 part. cm-3 for children attending one urban school to 1.6×104 part. cm-3 for the rural school. The corresponding daily alveolar deposited surface area dose varied from about 1.7×103 mm2 for urban schools to 6.0×102 mm2 for the rural school. For all of the children monitored, the lowest particle number concentrations are found during sleeping time and the highest were found during eating time. With regard to alveolar deposited surface area dose, a child's home was the major contributor (about 70%), with school contributing about 17% for urban schools and 27% for the rural school. An important contribution arises from the cooking/eating time spent at home, which accounted for approximately 20% of overall exposure, corresponding to more than 200 mm2. These activities represent the highest dose received per time unit, with very high values also encountered by children with a fireplace at home, as well as those that spend considerable time stuck in traffic jams.
Resumo:
This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, and it quantifies school children’s personal exposure to UF particles, in terms of number, using Philips Aerasense Nano Tracers (NTs). This study is being conducted in conjunction with the “Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH)” project, which aims to determine the relationship between exposure to traffic related UF particles and children’s health (http://www.ilaqh.qut.edu.au/Misc/UPTECH%20 Home.htm). To achieve this, air quality and some health data are being collected at 25 schools within the Brisbane Metropolitan Area in Australia over two years. The school children’s personal exposure to UF particles in the first 17 schools are presented here. These schools were tested between Oct 2010 and Dec 2011. Data collection is expected to be complete by mid 2012.
Resumo:
While there are sources of ions both outdoors and indoors, ventilation systems can introduce as well as remove ions from the air. As a result, indoor ion concentrations are not directly related to air exchange rates in buildings. In this study, we attempt to relate these quantities with the view of understanding how charged particles may be introduced into indoor spaces.