875 resultados para requirement-based testing
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
A novel optical add-drop multiplexer (OADM) based on the Mach-Zelauler interferometer (MZI) and the fiber Bragg grating (FBG) is proposed for the first tittle to the authors ' knowledge. In the structure, the Mach-Zehnder interferometer acts as an optical switch. The principle of the OADM is analyzed in this paper. The OADM can add/drop one of the multi-input channels or pass the channel directly by adjusting the difference of the two arms of the interferometer. The channel isolation is more than 20 dB
Resumo:
Resumen tomado de la publicación
Resumo:
Garment information tracking is required for clean room garment management. In this paper, we present a camera-based robust system with implementation of Optical Character Reconition (OCR) techniques to fulfill garment label recognition. In the system, a camera is used for image capturing; an adaptive thresholding algorithm is employed to generate binary images; Connected Component Labelling (CCL) is then adopted for object detection in the binary image as a part of finding the ROI (Region of Interest); Artificial Neural Networks (ANNs) with the BP (Back Propagation) learning algorithm are used for digit recognition; and finally the system is verified by a system database. The system has been tested. The results show that it is capable of coping with variance of lighting, digit twisting, background complexity, and font orientations. The system performance with association to the digit recognition rate has met the design requirement. It has achieved real-time and error-free garment information tracking during the testing.
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In order to improve the quality of healthcare services, the integrated large-scale medical information system is needed to adapt to the changing medical environment. In this paper, we propose a requirement driven architecture of healthcare information system with hierarchical architecture. The system operates through the mapping mechanism between these layers and thus can organize functions dynamically adapting to user’s requirement. Furthermore, we introduce the organizational semiotics methods to capture and analyze user’s requirement through ontology chart and norms. Based on these results, the structure of user’s requirement pattern (URP) is established as the driven factor of our system. Our research makes a contribution to design architecture of healthcare system which can adapt to the changing medical environment.
Resumo:
Tests for business cycle asymmetries are developed for Markov-switching autoregressive models. The tests of deepness, steepness, and sharpness are Wald statistics, which have standard asymptotics. For the standard two-regime model of expansions and contractions, deepness is shown to imply sharpness (and vice versa), whereas the process is always nonsteep. Two and three-state models of U.S. GNP growth are used to illustrate the approach, along with models of U.S. investment and consumption growth. The robustness of the tests to model misspecification, and the effects of regime-dependent heteroscedasticity, are investigated.
Resumo:
A major problem in e-service development is the prioritization of the requirements of different stakeholders. The main stakeholders are governments and their citizens, all of whom have different and sometimes conflicting requirements. In this paper, the prioritization problem is addressed by combining a value-based approach with an illustration technique. This paper examines the following research question: How can multiple stakeholder requirements be illustrated from a value-based perspective in order to be prioritizable? We used an e-service development case taken from a Swedish municipality to elaborate on our approach. Our contributions are: 1) a model of the relevant domains for requirement prioritization for government, citizens, technology, finances and laws and regulations; and 2) a requirement fulfillment analysis tool (RFA) that consists of a requirement-goal-value matrix (RGV), and a calculation and illustration module (CIM). The model reduces cognitive load, helps developers to focus on value fulfillment in e-service development and supports them in the formulation of requirements. It also offers an input to public policy makers, should they aim to target values in the design of e-services.
Resumo:
This paper proposes unit tests based on partially adaptive estimation. The proposed tests provide an intermediate class of inference procedures that are more efficient than the traditional OLS-based methods and simpler than unit root tests based on fully adptive estimation using nonparametric methods. The limiting distribution of the proposed test is a combination of standard normal and the traditional Dickey-Fuller (DF) distribution, including the traditional ADF test as a special case when using Gaussian density. Taking into a account the well documented characteristic of heavy-tail behavior in economic and financial data, we consider unit root tests coupled with a class of partially adaptive M-estimators based on the student-t distributions, wich includes te normal distribution as a limiting case. Monte Carlo Experiments indicate that, in the presence of heavy tail distributions or innovations that are contaminated by outliers, the proposed test is more powerful than the traditional ADF test. We apply the proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in output. However, evidence against unit roots is not found in real exchange rate and nominal interest rate even haevy-tail is taken into a account.
Resumo:
This paper presents a new non-destructive testing (NDT) for reinforced concrete structures, in order to identify the components of their reinforcement. A time varying electromagnetic field is generated close to the structure by electromagnetic devices specially designed for this purpose. The presence of ferromagnetic materials (the steel bars of the reinforcement) immersed in the concrete disturbs the magnetic field at the surface of the structure. These field alterations are detected by sensors coils placed on the concrete surface. Variations in position and cross section (the size) of steel bars immersed in concrete originate slightly different values for the induced voltages at the coils.. The values for the induced voltages were obtained in laboratory tests, and multi-layer perceptron artificial neural networks with Levemberg-Marquardt training algorithm were used to identify the location and size of the bar. Preliminary results can be considered very good.
Resumo:
This paper presents a semi-automated method for extracting road segments from medium-resolution images based on active testing and edge analysis. The method is based on two sequential and independent stages. Firstly, an active testing method is used to extract an approximated road centreline which is based on a sequential and local exploitation of the image. Secondly, an iterative strategy based on edge analysis and the approximated centreline is used to measure precisely the road centreline. Based on the results obtained using medium-resolution test images, the method seems to be very promising. In general, the method proved to be very accurate whenever the roads are characterized by two well-defined anti-parallel edges and robust even in the presence of larger obstacles such as trees and shadows.
Resumo:
Gesture-based applications have particularities, since users interact in a natural way, much as they interact in the non-digital world. Hence, new requirements are needed on the software design process. This paper shows a software development process model for these applications, including requirement specification, design, implementation, and testing procedures. The steps and activities of the proposed model were tested through a game case study, which is a puzzle game. The puzzle is completed when all pieces of a painting are correctly positioned by the drag and drop action of users hand gesture. It also shows the results obtained of applying a heuristic evaluation on this game. © 2012 IEEE.