916 resultados para remoção
Resumo:
Stabilization pond is the main technology used for treatment wastewater, in northeast Brazil, due to lower cost of deployment, operation and maintenance compared to other technologies. Most systems of stabilization ponds has been in operation for some time, on average 10 years of operation, receiving high organic loads and do not have good removal efficiencies of the main parameters for which have been designed. Therefore it is necessary to work to quantify the efficiency of current systems. This study evaluated the biodegradability of organic matter in raw sewage, the removal of organic matter in reactors and determination of the kinetic constant removal of organic matter (k), both in reactors and in raw sewage, based on the analysis made in the laboratory and through mathematical methods proposed in the literature, in nine systems stabilization ponds, located in Rio Grande do Norte. In relation the degradation kinetics in stabilization ponds, it was observed that many papers published in the literature were obtained in pilot-scale systems, which often, due to the action of external factors such as wind and temperature, these can t be considered as a reference in the analysis of the kinetic constant K, so the need for more research into systems of scale. This study had three distinct phases and simultaneous, routine monitoring, study of the daily cycle and the determination of kinetic constant of degradation of organic matter (K). The monitoring showed that the removal efficiencies of organic matter on most systems were lower than suggested by the literature, the best efficiencies of around 76% (BOD) and 72% (COD) and the worst of the order of 48% (BOD) and 55% (COD). The calculation of K in raw sewage (Ke) was within the range of variation expected in the literature (0.35 to 0.60 days-1). Already for the results obtained for K in the reactors (Kr), there were well below the values recommended in the literature (0.25 to 0.40 d-1 for complete mix and from 0.13 to 0.17 d-1 for flow dispersed), in line with the overloads that organic systems are subject
Resumo:
This research evaluated the microalgae removal produced in a stabilization pond system using biofilters as post-treatment, besides characterizing the effluents of stabilization ponds and filters in relation to concentrations of algal biomass (chlorophyll a and suspended solids), organic matter (BOD and COD), total phosphorus, orthophosphate, pH and dissolved oxygen, and tried to correlate physicochemical parameters with chlorophyll "a". It was held at the Ponta Negra ETE which is constituted by three stabilization ponds, with a primary facultative pond and two of maturation. For the algae removal were used two submerged bio-filters: the filter FPF (Facultative Pond Filter), fed with facultative pond effluent; and the filter MPF (Maturation Pond Filter), fed with second maturation pond effluent. The filling material of both filters was predominantly gravel no. 2, although it contains portions of gravel no. 1 and no. 3. The filters operating conditions were bad, they were nearly 10 years without maintenance, without cleaning or removal of sludge since the time of its construction, and part of the filling material may be obstruct. Despite poor operating conditions were obtained satisfactory results, in level of posttreatment. Removal efficiencies in relation to BOD and COD were 7 and 25% in FPF and 9 and 19% and in MPF, respectively. In relation to TSS efficiencies in MPF and FPF were 37 and 20%, respectively. As for the chlorophyll "a" removal, the FPF efficiency was 44% and the MPF was 40%. There was 50% of consumption of dissolved oxygen, on average, within the filters. Two profiles were performed in the filters, and it was possible to conclude that variations throughout the day were not statistically significant, and that, regardless of the time of collection, they would have the same representation comparing to the time of data collection (7 am) and the daily average, although individual variations throughout the day have been shown to be significant. Another important observation is that the correlations between Chlorophyll a and TSS were bigger and more significant in the effluent of the filters than in the effluent of the ponds
Resumo:
Waste stabilization ponds are the main technology in use for domestic sewage treatment in Rio Grande do Norte State (RN), northeast Brazil. The are around 80 systems, constructed mainly by municipal city halls, being series comprised by a primary facultative pond followed by two maturation ponds the most used configuration. Due to problems related with the production and destination of sludge and generation of bad odors, the designers have avoided the use of anaerobic lagoons. The majority of systems are rarely monitored to verify their efficiencies and to get new project parameters for future designing. This work has as purpose to make a diagnosis of efficiency of three series of waste stabilization pond series (WSPS) of Jardim Lola 1, Jardim Lola 2 and Beira Rio, located in the North Zone of the city of the Natal/RN, treating domestic raw sewage, on the removal of organic matter and thermotolerant coliform, comparing the operational conditions of the systems this inside of the bands foreseen in the project, through parameters BOD5, QOD, thermotolerant coliforms, dissolved oxygen, pH, temperature, ammoniac nitrogen, total and suspended solids. The work was carried through in the WSPS, all constituted by a primary facultative pond followed by two maturation ponds. Socioeconomic characteristics of population are predominantly low and all the plants are very near of the contributing basins. The series were monitored from of May the November of 2002, totalizing 20 collections of grab samples of raw sewage and ponds effluents between 8:00 and 9:50 h. The main aspect to be detached by the results was the great concentration of organic matter (BOD and COD) and microorganisms the raw sewage which were around two times more concentrated than those values foreseen one in project. Considering all series the highest removals of organic matter were observed in system Beira Rio (84 and 78% of BOD and COD, respectively), which presented high hydraulic detention time (TDH = 89 days). On the other hand, Jardim Lola 1 and Jardim Lola 2 presented a much lower values of HDT (36 days and 18 days respectively) and their removals of BOD and COD were the same (76% and 60%, respectively). The Beira Rio WSPS, was the most efficient verified in relation to solids and ammonia, proving the great influence of the operational variables such as HDT and applied surface organic loadings on the performance of pond series. Although the treatment plants have reached efficiencies of thermotolerant coliforms around 99,999%, the concentrations in the final effluent can be considered very high for launching in aquatic bodies, particularly those produced by Jardim Lola 1 and Jardim Lola 2 series
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and/or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
O presente trabalho objetivou a avaliação da remoção de matéria orgânica carbonácea e nitrogenada, bem como a determinação do fluxo crítico, em biorreator de membranas, com zona pré-anóxica, tratando águas residuárias industriais da produção de aminoácidos. O reator foi operado sob carga orgânica volumétrica de 1,91 kg.DQO.m-3.d-1 e 0,18 kg.NTK.m-3.d-1; a recirculação do reator aeróbio para o reator anóxico foi de quatro vezes a vazão afluente. O reator apresentou médias de remoção de DQO, NTK e NT de 97, 98 e 92%, respectivamente. O sistema de ultrafiltração foi testado em vários fluxos entre 25 e 37 L.m-2.h-1 e determinou-se o fluxo crítico de 28 L.m-2.h-1 quando operado com 11,4 g.L-1 de SST e 35 dias de tempo de retenção celular. Os resultados mostraram que houve viabilidade técnica no uso de biorreator de membranas para remoção de matéria orgânica de águas residuárias industriais da produção de aminoácidos.
Resumo:
O filtro ecológico representa uma promissora tecnologia de tratamento, em razão desta não necessitar da aplicação de produtos químicos, além de sua constatada eficiência. Nele, estabelece-se entre os seres vivos a relação de cadeia alimentar. Inicialmente uma matriz aquosa foi acrescida de quatro fármacos (diclofenaco, naproxeno, ibuprofeno e paracetamol) e posteriormente analisada por cromatografia líquida de alta eficiência para avaliar a remoção desses compostos pelo filtro ecológico seguido pelo filtro de carvão granular biologicamente ativado. Parâmetros, entre eles turbidez, coliformes totais e termotolerantes, cor aparente e cor verdadeira, foram mensurados para verificar a eficiência dos filtros. Houve remoção de 97,43% do diclofenaco, 85,03% do ibuprofeno: 94,11% do naproxeno e 84,07% do paracetamol.
Resumo:
The organic matter. (OM) removal efficiency in the biochemical oxygen demand (BOD) and chemical oxygen demand (COD) forms for domestic wastewater and semi-intensive fish culture effluents by using three phase aerobic fluidized bed reactors with circulation in concentric tubes was studied. Three different ratios between external and internal areas by different internal diameter configurations (100, 125 and 150mm) to the same external diameter of 250mm were used; sand for filters and granulated activated carbon were used as supporting media. The reactors were tested for three hydraulic retention times: 11.5min to the R100, and 3h for the R125 and R150 reactors. The results demonstrated that this kind of reactors had good performance in the BOD and COD removal for different concentrations of waste waters. BOD mean removal efficiencies obtained were: 47% at the R100 reactor, 57% and 93% of raw and filtered BOD respectively at R125, 48 and 89% of raw and filtered BOD at R150. The COD mean calculated removal efficiencies were: 75% at the R100 reactor, 56 and 86% of raw and filtered COD at R125, and 54 and 86% of raw and filtered COD at R150. In the case of domestic wastewater it is necessary to provide a solids removal system at the reactor outflow in order to increase the removal of suspended OM from the final effluent.
Resumo:
O objetivo deste trabalho foi monitorar o desempenho de remoção de nitrogênio amoniacal no tratamento das águas residuárias da produção intensiva de tilápia nilótica em sistema com recirculação de água. O sistema foi constituído por um sedimentador convencional e um reator aeróbio de leito fluidizado trifásico com circulação, operados com tempos de detenção hidráulica de 176.4 e 11.9 minutos respectivamente. O meio suporte utilizado no reator foi o carvão ativado granular com densidade aparente de 1.64 g/cm3 e tamanho efetivo de 0.34 mm; a concentração do meio suporte no reator foi mantida constante em 80 g/L. A eficiência média de remoção do nitrogênio amoniacal total foi de 41.2%. O sistema avaliado é uma alternativa efetiva para o reuso da água em sistemas de recirculação para aqüicultura. Embora a variabilidade das concentrações do nitrogênio amoniacal afluente cujo valor médio foi de 0.136 mg/L, o efluente do reator conservou as características de qualidade da água estáveis, com concentrações médias de nitrogênio amoniacal de 0.079 mg/L e do oxigênio dissolvido de 6.70 mg/L, recomendáveis para a criação dos peixes e nas faixas de valores permitidos pela legislação Brasileira (Resolução CONAMA No. 357 de março 5 de 2005) para lançamento de efluentes finais nos corpos de água receptores.
Resumo:
This study evaluates the inclusion of quaternary ammonium salt, bromide hexadecyl trimethyl ammonium (HDTMA-Br) on sodium bentonite to evaluate their performance on the adsorption of phenol present in produced water. It was observed an increase in d001 samples modified with HDTMA-Br by diffraction of X-rays, showing the intercalation of quaternary ammonium cations in the interlamellar layers of clay. Through the adsorption isotherms could be abserver adsorption behavior of sodium bentonite and organophilic bentonite produced in three different concentrations of HDTMA-Br for adsorption of phenol, which is the main phenolic compound found in the product water. Different concentrations of synthetic solutions of phenol were placed in contact with these adsorbents under the same conditions of agitation and temperature. The adsorbent showed adsorptive favorable, especially the clay modified with the highest concentration of HDTMA-Br, 150% CEC of clay, BEN30-14, with higher amounts of phenol adsorbed per gram of adsorbent (mg.g-1)
Resumo:
The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive
Resumo:
Polyester fibers are the most used fibers in the world and disperse dyes are used for dyeing these fibers. After dyeing, the colorful dyebath is discharged into effluent streams, which needs a special treatment for color removal. Surfactants interaction with dyes has been evaluated in several studies, including the textile area, specifically in the separation of dyes from textile wastewater. In this work a cationic surfactant was used in a microemulsion system for the extraction of anionic dyes (disperses dyes) from textile wastewater. These microemulsion system was composed by dodecylamonium chloride (surfactant), kerosene oil (organic phase), isoamyl alcohol (cosurfactant) and the wastewater (aqueous phase). The wastewater that results after the dyeing process is acid (pH 5). It was observed that changing the pH value to above 12.8 the extraction could be made, resulting in an aqueous phase with low color level. The Scheffé net experimental design was used for the extraction process optimization, and the obtained results were evaluated using the program "Statistica 7.0". The optimal microemulsion system was composed by 59.8wt.% of wastewater, 30.1wt.% of kerosene, 3.37wt.% of surfactant and 6.73wt.% of cosurfactant, providing extraction upper than 96%. A mix of reactive dyebath (50%) and disperse dyebath (50%) was used as aqueous phase and it presented extraction upper than 98%. The water phase after extraction process can be reused in a new dyeing, being obtained satisfactory results, according to the limits established by textile industry for a good dyeing. Tests were accomplished seeking to study the influence of salt addition and temperature. An experimental design was used for this purpose, which showed that the extraction doesn't depend on those factors. In this way, the removal of color from textile wastewater by microemulsion is a viable technique (that does not depend of external factors such as salinity and temperature), being obtained good extraction results even with in wastewater mixtures
Resumo:
In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents
Resumo:
Volatile Organic Compounds are pollutants coming mainly from activities that use fossil fuels. Within this class are the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds that are considered hazardous. Among the various existing techniques for degradation of pollutants, there is advanced oxidation using H2O2 generating hidoxil radical ( OH). In this work, the mesoporous material of MCM-41 was synthesized by hydrothermal method and then was used as support, the impregnation of titanium by the method of synthesis with excess solvent to obtain the catalyst Ti-MCM-41. The catalyst was used in the reaction catalyzed removal of BTEX in water using H2O2 as oxidant. The materials were characterized by: XRD, TG/DTG, FTIR, nitrogen adsorption-desorption and FRX-EDX, in order to verify the method of impregnation of the mesoporous titanium support was effective. Catalytic tests were carried out in reactors of 20 mL containing BTEX (100.0 μg/L), H2O2 (2.0 M) and Ti-MCM-41 (2.0 g/L) in acid medium. The reaction occurred for 5 h at 60 °C and analysis were performed by gas chromatography with photoionization detector and static headspace sampler. The characterizations have proven the effectiveness of the synthesis method used and the incorporation of titanium lt in the support. The catalytic tests showed satisfactory results with conversion of more than 95 % for the studied compounds, where the catalyst 48% Ti-MCM-41 showed a higher removal efficiency of the compounds under study
Resumo:
Produced water has lately aroused interest due to their high degree of salinity, suspended oil particles, chemicals added in various manufacturing processes, heavy metals and radioactivity sometimes. Along with oil and due to its high volume production, water production is one of the pollutants of most concern in the process of oil extraction. PAHs due to their ubiquity and their characteristics carcinogenic or mutagenic and teratogenic even have attracted the attention of every scientific society. Formed from the incomplete combustion of organic matter may be natural or anthropogenic. Some materials have been researched with the goal of cleaning up environmental matrices that may be contaminated by hydrocarbons. Among these materials researched various clays have been employed, of which highlights the vermiculite. The family of phyllosilicates, vermiculite for its potential and its high hydrophobic surface area has been a tool widely used in the decontamination of water in processes of oil spills. However, when it loses its capacity expanded hydrophobic having the necessity of using a hidrofobizante to make it organophilic. Among the numerous hidrofobizantes researched and used the linseed oil was the pioneer. In this study sought to evaluate the capacity of removal of PAHs using the vermiculite hydrofobized with linseed oil and wax also, for it was made use of the 24 full factorial design as the main tool for the experiments. We also evaluated the clay grain size (-20 +48 and -48 +80 #), the percentage of hidrofobizante applied (5 and 10%) and salinity of the water produced synthesized in our laboratory (35,000 and 55,000 ppm). The molecular fluorescence spectroscopy due to its sensitivity and speed was used to verify the adsorption capacity of clay, as well as gas chromatography served as an auxiliary technique to identify and quantify the PAHs in solution. In order to characterize the vermiculite was made use of X-ray fluorescence and X-ray diffraction. The infrared and thermogravimetry were essential to note hydrophobization and the amount of coating of clay. According to the fluorescence analysis showed that the test 12 was the best result in about 98% adsorption of fluorescent compounds, however the high salinity, the smallest particle size, the highest percentage of hidrofobizante and the use of linseed oil showed greater efficiency in the removal capacity of these hydrocarbons, in accordance with the trend followed by the analysis of the major factors of the factorial design. To verify the adsorption capacity of clay using a fixed volume of water produced synthetically, used as the test base 12, at their respective levels and factors. Thus, it was observed that after adding about 1 ½ liters of water solution produced synthetically, about 300 times its volume in mass, the vermiculite was able to adsorb 80% of fluorescent species present in solution
Resumo:
The separation oil-water by the use of flotation process is characterized by the involvement between the liquid and gas phases. For the comprehension of this process, it s necessary to analyze the physical and chemical properties command float flotation, defining the nature and forces over the particles. The interface chemistry has an important role on the flotation technology once, by dispersion of a gas phase into a liquid mixture the particles desired get stuck into air bubbles, being conduced to a superficial layer where can be physically separated. Through the study of interface interaction involved in the system used for this work, was possible to apply the results in an mathematical model able to determine the probability of flotation using a different view related to petroleum emulsions such as oil-water. The terms of probability of flotation correlate the collision and addition between particles of oil and air bubbles, that as more collisions, better is the probability of flotation. The additional probability was analyzed by the isotherm of absorption from Freundlich, represents itself the add probability between air bubbles and oil particles. The mathematical scheme for float flotation involved the injected air flow, the size of bubbles and quantity for second, the volume of float cell, viscosity of environment and concentration of demulsifier. The results shown that the float agent developed by castor oil, pos pH variation, salt quantity, temperature, concentration and water-oil quantity, presented efficient extraction of oil from water, up to 95%, using concentrations around 11 ppm of demulsifier. The best results were compared to other commercial products, codified by ―W‖ and ―Z‖, being observed an equivalent demulsifier power between Agflot and commercial product ―W‖ and superior to commercial product ―Z‖