953 resultados para reinforced yield stress
Resumo:
Granular matter, also known as bulk solids, consists of discrete particles with sizes between micrometers and meters. They are present in many industrial applications as well as daily life, like in food processing, pharmaceutics or in the oil and mining industry. When handling granular matter the bulk solids are stored, mixed, conveyed or filtered. These techniques are based on observations in macroscopic experiments, i.e. rheological examinations of the bulk properties. Despite the amply investigations of bulk mechanics, the relation between single particle motion and macroscopic behavior is still not well understood. For exploring the microscopic properties on a single particle level, 3D imaging techniques are required.rnThe objective of this work was the investigation of single particle motions in a bulk system in 3D under an external mechanical load, i.e. compression and shear. During the mechanical load the structural and dynamical properties of these systems were examined with confocal microscopy. Therefor new granular model systems in the wet and dry state were designed and prepared. As the particles are solid bodies, their motion is described by six degrees of freedom. To explore their entire motion with all degrees of freedom, a technique to visualize the rotation of spherical micrometer sized particles in 3D was developed. rnOne of the foci during this dissertation was a model system for dry cohesive granular matter. In such systems the particle motion during a compression of the granular matter was investigated. In general the rotation of single particles was the more sensitive parameter compared to the translation. In regions with large structural changes the rotation had an earlier onset than the translation. In granular systems under shear, shear dilatation and shear zone formation were observed. Globally the granular sediments showed a shear behavior, which was known already from classical shear experiments, for example with Jenike cells. Locally the shear zone formation was enhanced, when near the applied load a pre-diluted region existed. In regions with constant volume fraction a mixing between the different particle layers occurred. In particular an exchange of particles between the current flowing region and the non-flowing region was observed. rnThe second focus was on model systems for wet granular matter, where an additional binding liquid is added to the particle suspension. To examine the 3D structure of the binding liquid on the micrometer scale independently from the particles, a second illumination and detection beam path was implemented. In shear and compression experiments of wet clusters and bulk systems completely different dynamics compared to dry cohesive models systems occured. In a Pickering emulsion-like system large structural changes predominantly occurred in the local environment of binding liquid droplets. These large local structural changes were due to an energy interplay between the energy stored in the binding droplet during its deformation and the binding energy of particles at the droplet interface. rnConfocal microscopy in combination with nanoindentation gave new insights into the single particle motions and dynamics of granular systems under a mechanical load. These novel experimental results can help to improve the understanding of the relationship between bulk properties of granular matter, such as volume fraction or yield stress and the dynamics on a single particle level.rnrn
Resumo:
The effects of Si and cooling rate are investigated for their effect on the mechanical properties and microstructure. Three alloys were chosen with varying C and Si contents and an attempt to keep the remainder of the elements present constant. Within each heat, three test blocks were poured. Two blocks had chills – one with a fluid flowing through it to cool it (active chill) and one without the fluid (passive) – and the third block did not have a chill. Cooling curves were gathered and analyzed. The mechanical properties of the castings were correlated to the microstructure, cooling rate and Si content of each block. It was found that an increase in Si content increased the yield stress, tensile strength and hardness but decreased the impact toughness, elongation and Young’s modulus. The fast cooling rates produced by the chills caused a high nodule count in the castings along with a fine ferrite grain size and a high degree of nodularity. The fine microstructures, in turn, increased the strength and ductile to brittle transition temperature (DBTT) of the castings. The fast cooling rate was not adequate to overcome the dramatic increase in DBTT that is caused by the addition of Si.
Resumo:
Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.
Resumo:
Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.
Resumo:
The purpose of this paper is to provide information on the behaviour of steel prestressing wires under likely conditions that could be expected during a fire or impact loads. Four loadings were investigated: a) the influence of strain rate – from 10–3 to 600 s–1 – at room temperature, b) the influence of temperature – from 24 to 600 °C – at low strain rate, c) the influence of the joint effect of strain rate and temperature, and d) damage after three plausible fire scenarios. At room temperature it was found that using “static” values is a safe option. At high temperatures our results are in agreement with design codes. Regarding the joint effect of temperature and strain rate, mechanical properties decrease with increasing temperature, although for a given temperature, yield stress and tensile strength increase with strain rate. The data provided can be used profitably to model the mechanical behaviour of steel wires under different scenarios.
Resumo:
Esta tesis ha estudiado los morteros celulares, centrándose en la experimentación con pastas de cemento aireadas (PCA) con polvo de aluminio como agente expansor. El objetivo es el desarrollo de un material cementicio con una baja conductividad térmica que sirva como aislamiento térmico. La naturaleza inorgánica del material lo hace incombustible, en contraste con las espumas poliméricas existentes en el mercado, cuya aplicación en cámaras ventiladas ha sido prohibida por normativas de construcción tanto a nivel nacional como internacional. Las posibles aplicaciones son con proyección neumática o en paneles prefabricados. Se han ensayado dos series de pastas de cemento con polvo de aluminio: - Serie WPC/CAC/CH. Mezcla de referencia con cemento blanco (WPC), cemento de aluminato cálcico (CAC) y cal aérea (CH) en proporción 5:1:4. - Serie OPC/CH. Mezcla de referencia con cemento portland con cenizas volantes (OPC) y cal aérea (CH) en proporción OPC/CH de 4:1 A las mezclas de referencia se le han añadido adiciones de metacaolín (MK) (10 y 20%) o sepiolita (SP) (1 y 2%) para observar el efecto que producen tanto en el mortero fresco como en el mortero endurecido. Se ha estudiado la reología de las pastas en estado fresco, analizando el proceso de expansión de las pastas, registrando los valores de tensión de fluencia, aire ocluido y temperatura durante la expansión. Con los valores obtenidos se ha discutido la influencia de las adiciones utilizadas en la cinética de corrosión del polvo de aluminio que genera la expansión, concluyendo que las adiciones puzolánicas (CV y MK) y la SP reducen mucho el periodo de inducción, lo que provoca poros más grandes y mayor cantidad de aire ocluido. Asimismo se ha analizado la relación entre la tensión de fluencia y el contenido de aire ocluido, deduciendo que a mayor tensión de fluencia en el momento de iniciarse la expansión, menor tamaño de poros y contenido de aire ocluido. Finalmente, se han obtenido las densidades y capacidades de retención de agua de los morteros frescos. Para caracterizar la red porosa de las pastas aireadas endurecidas, se obtuvieron tanto las densidades reales, netas, aparentes y relativas como las porosidades abiertas, cerradas y totales con ensayos hídricos. Finalmente se obtuvieron imágenes de los poros con tomografía axial computerizada para obtener las porosimetrías de las muestras. La caracterización de la red porosa ha servido para terminar de analizar lo observado en la evolución de la expansión del mortero fresco. Se ha analizado la influencia de la red porosa en la conductividad térmica, obtenida con caja caliente, comparándola con la existente en la literatura existente tanto de morteros celulares como de espumas poliméricas. Se concluye que los valores de conductividad térmica conseguida están en el mínimo posible para un material celular de base cementicia. La microestructura se ha estudiado con microscopía electrónica de barrido, difracción de rayos X y ensayos térmicos TG/ATD, observando que los productos de hidratación encontrados coinciden con los que se producen en morteros sin airear. Las imágenes SEM y los resultados de ultrasonidos han servido para analizar la presencia de microfisuras de retracción en las pastas aireadas, observando que en las muestras con adiciones de MK y SP, se reduce la presencia de microfisuras. ABSTRACT This thesis has studied cellular mortars, focusing in testing aerated cement pastes with aluminum powder as expansive agent. The purpose is the development of a cementitious material with low thermal conductivity that can be used as thermal isolation. Inorganic nature of this material makes it non-combustible, in contrast with polymeric foams in market, whose application in ventilated double skin façade systems has been banned by building standards, both domestically and internationally. Possible uses for this material are pneumatically sprayed applications and precast panels. Two series of batches with aluminum powder have been tested: - WPC/CAC/CH series. Reference paste with white portland cement (WPC), calcium aluminate cement (CAC) and lime (CH) with 5:1:4 ratio. - OPC/CH series. Reference paste with portland cement with fly ash (OPC) and lime (CH) with 4:1 ratio. Metakaolin (MK) (10 and 20%) or sepiolite (SP) (1 and 2%) additions were used in reference pastes to characterize the effect in fresh and hardened mortar. Rheology in fresh pastes was studied, expansion process of pastes was analyzed, recording yield stress, entrained air and temperature values during expansion. Recorded values were used to discuss influence of additions on reaction kinetics of aluminum powder corrosion, that produces expansion.. Conclusion is that pozzolanic additions (FA and MK) and SP greatly reduce induction period, producing bigger pores and more entrained air. Relation between yield stress and entrained air has been also analyzed, observing that the bigger yield stress at beginning of expansion, the smaller pores size and the lower entrained air values. Finally density and water retention of fresh mortars were obtained. Pore network in hardened aerated cement pastes was characterized by imbibition methods providing true, bulk and relative density, and providing also open, closed and total porosity. Finally, pore system imaging were obtained with computerized axial tomography to study porosimetry of specimens. Pore network characterization was useful to complete facts analysis observed in expansion of fresh mortars. Influence of pore network in thermal conductivity, checked in hot box, was analyzed comparing with those existing values in cellular mortar and polymeric foams researches. It was concluded that thermal conductivity values achieved are close to minimum possible in a cementitious cellular material. Microstructure was studied with Scanning Electron Microscopy, X-Ray Diffractometry and TG-DTA analysis, observing that hydration phases found, are those produced in non aerated mortar. SEM imaging and ultrasound results were useful to analyze shrinkage microcracks in aerated cement pastes, concluding that microcrack presence in specimens with MK and SP additions were reduced.
Resumo:
The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.
Resumo:
Esta tese tem por objetivo a aplicação do processamento por atrito linear na liga de titânio Ti-6Al-4V. Derivado da solda por atrito linear, é um processo recente desenvolvido na década de 90 para união de alumínio. Sua aplicação em outros tipos de materiais como aços e ligas de alto desempenho, em especial o titânio, tem interessado a industria. A metodologia utilizada nesta tese para avaliar o processamento por atrito linear, consistiu na execução de ensaios mecânicos de tração em condições mistas em chapas da liga de titânio Ti-6Al-4V. A máquina utilizada para o processamento das chapas foi um centro de usinagem CNC convencional, adaptado com dispositivos especiais. Além dos ensaios de tração em condições mistas, foram executadas medições de microdurezas nas regiões atingidas pelo processo, avaliação das microestruturas resultantes e medições de tensão residual para uma caracterização mais ampla do processo. As microestruturas na região processada são caracterizadas por uma estrutura totalmente transformada. As temperaturas de pico na região processada excederam a temperatura -transus durante o processamento e a transformação da fase + ocorreu durante a fase de resfriamento. A transformação da fase para resultou na formação de agulhas de fase nos contornos e pelo interior dos grãos da fase . Pequenas regiões com estrutura equiaxial de grãos ( globular) foram observados na zona de processamento. A abordagem dos resultados quantitativos foi feita de forma estatística, visando identificar os parâmetros de maior interação com os resultados observados. Foi identificado nesta tese que a rotação da ferramenta apresentou a maior influência nos resultados de tensão residual, microdureza e tensão de escoamento. Uma importante contribuição à modelagem da tensão de escoamento para materiais anisotrópicos é proposta, baseado em um critério de escoamento ortotrópico. Equações complementares baseadas nos testes mistos de tração e cisalhamento são propostas para modificar o modelo ortotrópico. O intuito deste modelo é indicar em que condições o material tem seu regime de escoamento atingido, podendo servir de base para simulações práticas de peças em condições similares.
Resumo:
The effect of an organically surface modified layered silicate on the viscosity of various epoxy resins of different structures and different functionalities was investigated. Steady and dynamic shear viscosities of the epoxy resins containing 0-10 wt% of the organoclay were determined using parallel plate rheology. Viscosity results were compared with those achieved through addition of a commonly used micron-sized CaCO3 filler. It was found that changes in viscosities due to the different fillers were of the same order, since the layered silicate was only dispersed on a micron-sized scale in the monomer (prior to reaction), as indicated by X-ray diffraction measurements. Flow activation energies at a low frequency were determined and did not show any significant changes due to the addition of organoclay or CaCO3. Comparison between dynamic and steady shear experiments showed good agreement for low layered silicate concentrations below 7.5 wt%, i.e. the Cox-Merz rule can be applied. Deviations from the Cox-Merz rule appeared at and above 10 wt%, although such deviations were only slightly above experimental error. Most resin organoclay blends were well predicted by the Power Law model, only concentrations of 10 wt% and above requiring the Herschel-Buckley (yield stress) model to achieve better fits. Wide-angle X-ray measurements have shown that the epoxy resin swells the layered silicate with an increase in the interlayer distance of approximately 15 Angstrom, and that the rheology behavior is due to the lateral, micron-size of these swollen tactoids.
Resumo:
The flow stress in tensile and compressive deformation has been determined in cast Mg, for a wide range of grain sizes between 36 mum and 1.5 mm. The grain size was varied by alloying Mg with small amounts of Zr. It was found that the 0.2% offset flow stress, sigma(y) (MPa), varies with the grain size, d (m), as sigma(y) = 17.7 + 0.25 d(-1/2) in tension, while sigma(y) = -2.3 + 0.39 d(-1/2) in compression. Possible reasons for the difference between tension and compression are discussed.
Resumo:
Adding 1%Si to binary Al-5Mg alloy slightly increases the yield stress in comparison with the Si free alloy but dramatically reduces the ductility and tensile strength due to the formation of brittle eutectic Mg2Si and pi-Al8FeMg3Si6 particles. Adding 3%Si slightly reduces the yield stress, presumably due to some of the Mg being tied up in the Mg2Si, and further reduces the ductility due to the increased volume fraction of intermetallics. Solution heat treatment at 436degreesC decreases the yield stress of both Si containing alloys, and slightly increases the ductility in the alloy with 3%Si. Subsequent ageing at 180degreesC has no further effects on the strength or ductility. The loss in strength of the heat treated alloys seems to be due to overageing Of Mg2Si precipitates dispersed in the bulk of the alloy. (C) 2004 W. S. Maney Son Ltd.
Resumo:
Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation.
Resumo:
Drilling fluids present a thixotropic behavior and they usually gel when at rest. The sol-gel transition is fundamental to prevent the deposit of rock fragments, generated by drilling the well, over the drill bit during eventual stops. Under those conditions, high pressures are then required in order to break-up the gel when circulation is resumed. Moreover, very high pressures can damage the rock formation at the bottom of the well. Thus, a better understanding of thixotropy and the behavior of thixotropic materials becomes increasingly important for process control. The mechanisms that control thixotropy are not yet well defined and modeling is still a challenge. The objective of this work is to develop a mathematical model to study the pressure transmission in drilling fluids. This work presents a review of thixotropy and of different mathematical models found in the literature that are used to predict such characteristic. It also shows a review of transient flows of compressible fluids. The problem is modeled as the flow between the drillpipe and the annular region (space between the wall and the external part of the drillpipe). The equations that describe the problem (mass conservation, momentum balance, constitutive and state) are then discretized and numerically solved by using a computational algorithm in Fortran. The model is validated with experimental and numerical data obtained from the literature. Comparisons between experimental data obtained from Petrobras and calculated by three viscoplastic and one pseudoplastic models are conducted. The viscoplastic fluids, due to the yield stress, do not fully transmit the pressure to the outlet of the annular space. Sensibility analyses are then conducted in order to evaluate the thixotropic effect in pressure transmission.
Resumo:
International audience
Resumo:
The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive