850 resultados para random effects
Resumo:
A growing literature seeks to explain differences in individuals' self-reported satisfaction with their jobs. The evidence so far has mainly been based on cross-sectional data and when panel data have been used, individual unobserved heterogeneity has been modelled as an ordered probit model with random effects. This article makes use of longitudinal data for Denmark, taken from the waves 1995-1999 of the European Community Household Panel, and estimates fixed effects ordered logit models using the estimation methods proposed by Ferrer-i-Carbonel and Frijters (2004) and Das and van Soest (1999). For comparison and testing purposes a random effects ordered probit is also estimated. Estimations are carried out separately on the samples of men and women for individuals' overall satisfaction with the jobs they hold. We find that using the fixed effects approach (that clearly rejects the random effects specification), considerably reduces the number of key explanatory variables. The impact of central economic factors is the same as in previous studies, though. Moreover, the determinants of job satisfaction differ considerably between the genders, in particular once individual fixed effects are allowed for.
Resumo:
Many developing countries are afflicted by persistent inequality in the distribution of income. While a growing body of literature emphasizes differential fertility as a channel through which income inequality persists, this paper investigates differential child mortality – differences in the incidence of child mortality across socioeconomic groups – as a critical link in this regard. Using evidence from cross-country data to evaluate this linkage, we find that differential child mortality serves as a stronger channel than differential fertility in the transmission of income inequality over time. We use random effects and generalized estimating equations techniques to account for temporal correlation within countries. The results are robust to the use of an alternate definition of fertility that reflects parental preference for children instead of realized fertility.
Resumo:
In the study of traffic safety, expected crash frequencies across sites are generally estimated via the negative binomial model, assuming time invariant safety. Since the time invariant safety assumption may be invalid, Hauer (1997) proposed a modified empirical Bayes (EB) method. Despite the modification, no attempts have been made to examine the generalisable form of the marginal distribution resulting from the modified EB framework. Because the hyper-parameters needed to apply the modified EB method are not readily available, an assessment is lacking on how accurately the modified EB method estimates safety in the presence of the time variant safety and regression-to-the-mean (RTM) effects. This study derives the closed form marginal distribution, and reveals that the marginal distribution in the modified EB method is equivalent to the negative multinomial (NM) distribution, which is essentially the same as the likelihood function used in the random effects Poisson model. As a result, this study shows that the gamma posterior distribution from the multivariate Poisson-gamma mixture can be estimated using the NM model or the random effects Poisson model. This study also shows that the estimation errors from the modified EB method are systematically smaller than those from the comparison group method by simultaneously accounting for the RTM and time variant safety effects. Hence, the modified EB method via the NM model is a generalisable method for estimating safety in the presence of the time variant safety and the RTM effects.
Resumo:
A method of eliciting prior distributions for Bayesian models using expert knowledge is proposed. Elicitation is a widely studied problem, from a psychological perspective as well as from a statistical perspective. Here, we are interested in combining opinions from more than one expert using an explicitly model-based approach so that we may account for various sources of variation affecting elicited expert opinions. We use a hierarchical model to achieve this. We apply this approach to two problems. The first problem involves a food risk assessment problem involving modelling dose-response for Listeria monocytogenes contamination of mice. The second concerns the time taken by PhD students to submit their thesis in a particular school.
Resumo:
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.
Resumo:
BACKGROUND: Hallux valgus (HV) is a foot deformity commonly seen in medical practice, often accompanied by significant functional disability and foot pain. Despite frequent mention in a diverse body of literature, a precise estimate of the prevalence of HV is difficult to ascertain. The purpose of this systematic review was to investigate prevalence of HV in the overall population and evaluate the influence of age and gender. METHODS: Electronic databases (Medline, Embase, and CINAHL) and reference lists of included papers were searched to June 2009 for papers on HV prevalence without language restriction. MeSH terms and keywords were used relating to HV or bunions, prevalence and various synonyms. Included studies were surveys reporting original data for prevalence of HV or bunions in healthy populations of any age group. Surveys reporting prevalence data grouped with other foot deformities and in specific disease groups (e.g. rheumatoid arthritis, diabetes) were excluded. Two independent investigators quality rated all included papers on the Epidemiological Appraisal Instrument. Data on raw prevalence, population studied and methodology were extracted. Prevalence proportions and the standard error were calculated, and meta-analysis was performed using a random effects model. RESULTS: A total of 78 papers reporting results of 76 surveys (total 496,957 participants) were included and grouped by study population for meta-analysis. Pooled prevalence estimates for HV were 23% in adults aged 18-65 years (CI: 16.3 to 29.6) and 35.7% in elderly people aged over 65 years (CI: 29.5 to 42.0). Prevalence increased with age and was higher in females [30% (CI: 22 to 38)] compared to males [13% (CI: 9 to 17)]. Potential sources of bias were sampling method, study quality and method of HV diagnosis. CONCLUSIONS: Notwithstanding the wide variation in estimates, it is evident that HV is prevalent; more so in females and with increasing age. Methodological quality issues need to be addressed in interpreting reports in the literature and in future research.
Resumo:
Objective Factors associated with the development of hallux valgus (HV) are multifactorial and remain unclear. The objective of this systematic review and meta-analysis was to investigate characteristics of foot structure and footwear associated with HV. Design Electronic databases (Medline, Embase, and CINAHL) were searched to December 2010. Cross-sectional studies with a valid definition of HV and a non-HV comparison group were included. Two independent investigators quality rated all included papers. Effect sizes and 95% confidence intervals (CIs) were calculated (standardized mean differences (SMDs) for continuous data and risk ratios (RRs) for dichotomous data). Where studies were homogeneous, pooling of SMDs was conducted using random effects models. Results A total of 37 papers (34 unique studies) were quality rated. After exclusion of studies without reported measurement reliability for associated factors, data were extracted and analysed from 16 studies reporting results for 45 different factors. Significant factors included: greater first intermetatarsal angle (pooled SMD = 1.5, CI: 0.88–2.1), longer first metatarsal (pooled SMD = 1.0, CI: 0.48–1.6), round first metatarsal head (RR: 3.1–5.4), and lateral sesamoid displacement (RR: 5.1–5.5). Results for clinical factors (e.g., first ray mobility, pes planus, footwear) were less conclusive regarding their association with HV. Conclusions Although conclusions regarding causality cannot be made from cross-sectional studies, this systematic review highlights important factors to monitor in HV assessment and management. Further studies with rigorous methodology are warranted to investigate clinical factors associated with HV.
Resumo:
This paper describes a generalised linear mixed model (GLMM) approach for understanding spatial patterns of participation in population health screening, in the presence of multiple screening facilities. The models presented have dual focus, namely the prediction of expected patient flows from regions to services and relative rates of participation by region- service combination, with both outputs having meaningful implications for the monitoring of current service uptake and provision. The novelty of this paper lies with the former focus, and an approach for distributing expected participation by region based on proximity to services is proposed. The modelling of relative rates of participation is achieved through the combination of different random effects, as a means of assigning excess participation to different sources. The methodology is applied to participation data collected from a government-funded mammography program in Brisbane, Australia.
Resumo:
Objective: To calculate pooled risk estimates of the association between pigmentary characteristics and basal cell carcinoma (BCC) of the skin. Methods: We searched three electronic databases and reviewed the reference lists of the retrieved articles until July 2012 to identify eligible epidemiologic studies. Eligible studies were those published in between 1965 and July 2012 that permitted quantitative assessment of the association between histologically-confirmed BCC and any of the following characteristics: hair colour, eye colour, skin colour, skin phototype, tanning and burning ability, and presence of freckling or melanocytic nevi. We included 29 studies from 2236 initially identified. We calculated summary odds ratios (ORs) using weighted averages of the log OR, using random effects models. Results: We found strongest associations with red hair (OR 2.02; 95% CI: 1.68, 2.44), fair skin colour (OR 2.11; 95% CI: 1.56, 2.86), and having skin that burns and never tans (OR 2.03; 95% CI: 1.73, 2.38). All other factors had weaker but positive associations with BCC, with the exception of freckling of the face in adulthood which showed no association. Conclusions: Although most studies report risk estimates that are in the same direction, there is significant heterogeneity in the size of the estimates. The associations were quite modest and remarkably similar, with ORs between about 1.5 and 2.5 for the highest risk level for each factor. Given the public health impact of BCC, this meta-analysis will make a valuable contribution to our understanding of BCC.
Resumo:
Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matern correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.
Resumo:
Background The body of evidence related to breast-cancer-related lymphoedema incidence and risk factors has substantially grown and improved in quality over the past decade. We assessed the incidence of unilateral arm lymphoedema after breast cancer and explored the evidence available for lymphoedema risk factors. Methods We searched Academic Search Elite, Cumulative Index to Nursing and Allied Health, Cochrane Central Register of Controlled Trials (clinical trials), and Medline for research articles that assessed the incidence or prevalence of, or risk factors for, arm lymphoedema after breast cancer, published between January 1, 2000, and June 30, 2012. We extracted incidence data and calculated corresponding exact binomial 95% CIs. We used random effects models to calculate a pooled overall estimate of lymphoedema incidence, with subgroup analyses to assess the effect of different study designs, countries of study origin, diagnostic methods, time since diagnosis, and extent of axillary surgery. We assessed risk factors and collated them into four levels of evidence, depending on consistency of findings and quality and quantity of studies contributing to findings. Findings 72 studies met the inclusion criteria for the assessment of lymphoedema incidence, giving a pooled estimate of 16·6% (95% CI 13·6–20·2). Our estimate was 21·4% (14·9–29·8) when restricted to data from prospective cohort studies (30 studies). The incidence of arm lymphoedema seemed to increase up to 2 years after diagnosis or surgery of breast cancer (24 studies with time since diagnosis or surgery of 12 to <24 months; 18·9%, 14·2–24·7), was highest when assessed by more than one diagnostic method (nine studies; 28·2%, 11·8–53·5), and was about four times higher in women who had an axillary-lymph-node dissection (18 studies; 19·9%, 13·5–28·2) than it was in those who had sentinel-node biopsy (18 studies; 5·6%, 6·1–7·9). 29 studies met the inclusion criteria for the assessment of risk factors. Risk factors that had a strong level of evidence were extensive surgery (ie, axillary-lymph-node dissection, greater number of lymph nodes dissected, mastectomy) and being overweight or obese. Interpretation Our findings suggest that more than one in five women who survive breast cancer will develop arm lymphoedema. A clear need exists for improved understanding of contributing risk factors, as well as of prevention and management strategies to reduce the individual and public health burden of this disabling and distressing disorder.
Resumo:
We consider the problem of combining opinions from different experts in an explicitly model-based way to construct a valid subjective prior in a Bayesian statistical approach. We propose a generic approach by considering a hierarchical model accounting for various sources of variation as well as accounting for potential dependence between experts. We apply this approach to two problems. The first problem deals with a food risk assessment problem involving modelling dose-response for Listeria monocytogenes contamination of mice. Two hierarchical levels of variation are considered (between and within experts) with a complex mathematical situation due to the use of an indirect probit regression. The second concerns the time taken by PhD students to submit their thesis in a particular school. It illustrates a complex situation where three hierarchical levels of variation are modelled but with a simpler underlying probability distribution (log-Normal).
Resumo:
Objective: To examine the effects of personal and community characteristics, specifically race and rurality, on lengths of state psychiatric hospital and community stays using maximum likelihood survival analysis with a special emphasis on change over a ten year period of time. Data Sources: We used the administrative data of the Virginia Department of Mental Health, Mental Retardation, and Substance Abuse Services (DMHMRSAS) from 1982-1991 and the Area Resources File (ARF). Given these two sources, we constructed a history file for each individual who entered the state psychiatric system over the ten year period. Histories included demographic, treatment, and community characteristics. Study Design: We used a longitudinal, population-based design with maximum likelihood estimation of survival models. We presented a random effects model with unobserved heterogeneity that was independent of observed covariates. The key dependent variables were lengths of inpatient stay and subsequent length of community stay. Explanatory variables measured personal, diagnostic, and community characteristics, as well as controls for calendar time. Data Collection: This study used secondary, administrative, and health planning data. Principal Findings: African-American clients leave the community more quickly than whites. After controlling for other characteristics, however, race does not affect hospital length of stay. Rurality does not affect length of community stays once other personal and community characteristics are controlled for. However, people from rural areas have longer hospital stays even after controlling for personal and community characteristics. The effects of time are significantly smaller than expected. Diagnostic composition effects and a decrease in the rate of first inpatient admissions explain part of this reduced impact of time. We also find strong evidence for the existence of unobserved heterogeneity in both types of stays and adjust for this in our final models. Conclusions: Our results show that information on client characteristics available from inpatient stay records is useful in predicting not only the length of inpatient stay but also the length of the subsequent community stay. This information can be used to target increased discharge planning for those at risk of more rapid readmission to inpatient care. Correlation across observed and unobserved factors affecting length of stay has significant effects on the measurement of relationships between individual factors and lengths of stay. Thus, it is important to control for both observed and unobserved factors in estimation.
Resumo:
Ecological studies are based on characteristics of groups of individuals, which are common in various disciplines including epidemiology. It is of great interest for epidemiologists to study the geographical variation of a disease by accounting for the positive spatial dependence between neighbouring areas. However, the choice of scale of the spatial correlation requires much attention. In view of a lack of studies in this area, this study aims to investigate the impact of differing definitions of geographical scales using a multilevel model. We propose a new approach -- the grid-based partitions and compare it with the popular census region approach. Unexplained geographical variation is accounted for via area-specific unstructured random effects and spatially structured random effects specified as an intrinsic conditional autoregressive process. Using grid-based modelling of random effects in contrast to the census region approach, we illustrate conditions where improvements are observed in the estimation of the linear predictor, random effects, parameters, and the identification of the distribution of residual risk and the aggregate risk in a study region. The study has found that grid-based modelling is a valuable approach for spatially sparse data while the SLA-based and grid-based approaches perform equally well for spatially dense data.
Resumo:
The primary aim of this descriptive exploration of scientists’ life cycle award patterns is to evaluate whether awards breed further awards and identify researcher experiences after reception of the Nobel Prize. To achieve this goal, we collected data on the number of awards received each year for 50 years before and after Nobel Prize reception by all 1901–2000 Nobel laureates in physics, chemistry, and medicine or physiology. Our results indicate an increasing rate of awards before Nobel reception, reaching the summit precisely in the year of the Nobel Prize. After this pinnacle year, awards drop sharply. This result is confirmed by separate analyses of three different disciplines and by a random-effects negative binomial regression model. Such an effect, however, does not emerge for more recent Nobel laureates (1971–2000). In addition, Nobelists in medicine or physiology generate more awards shortly before and after prize reception, whereas laureates in chemistry attract more awards as time progresses.